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Abstract

According to the U.S. Census, nearly three million individuals in the United States rely on
wheelchairs, a large portion of which are electric wheelchairs, in order to regain lost mobility.
Consequently, these individuals depend on a reliable power system; if a wheelchair′s battery power
depletes without the user being aware, the individual may become stranded, further limiting his or
her freedom of mobility and potentially placing the user in a harmful situation. This research
seeks to develop a State-of-Charge (SOC) estimator for the batteries of an electric wheelchair. A
second-order equivalent circuit battery model is developed and parametrized for a wheelchair′s
lead-acid battery pack. The inputs to the algorithm are battery voltage and current and the output
of the algorithm is the battery pack′s estimated state of charge. To simplify the SOC estimation,
this algorithm models a vehicle′s fuel gauge. When a vehicle′s fuel tank is nearly full or nearly
empty, a fuel gauge presents the user with a full or empty reading. Outside of these regions, the
fuel gauge varies directly with the fuel remaining in the vehicle′s tank. Similar to a vehicle′s fuel
gauge, the algorithm yields the least accurate estimates of the wheelchair′s SOC in the maximum
and minimum SOC regions. These extrema are defined by the non-linearities present in the Open
Circuit Voltage (OCV) SOC curve. Consequently, a coulomb accumulator is incorporated to esti-
mate energy usage in these regions. A Kalman filter is incorporated to estimate SOC in the linear
region of the OCV-SOC curve.

This thesis presents the development of an autonomous wheelchair platform and the subsequent
implementation of the aforementioned battery state estimator.
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Chapter 1
Introduction

1.1 Motivation

Nearly 3.3 million Americans depend on a wheelchair to meet their daily mobility needs [1]
and a large percent of all wheelchair users rely on an electric wheelchair. Furthermore, wheelchair
use is expected to increase drastically with the advancing age of the baby boomer generation;
some even believe usage may double [2, 3]. Users range from young adults temporarily bound to
a wheelchair to recover from an athletic injury to the highly disabled coping with diseases such
as Cerebral Palsy or amyotrophic lateral sclerosis (ALS). Of interest to this research is are those
using electric wheelchairs, more specifically, the highly disabled and their interface with electric
wheelchairs.

According to [4], up to 10% of electric wheelchair users find electric wheelchairs extremely
difficult to use. Further, in a review of electric wheelchair trends, Simpson et al. stipulates that
nearly 61 to 91 percent of wheelchair users would benefit from a smart wheelchair [5] some of
the time. In other words, users would not necessarily need the intelligent features at all times, but
nearly all users would benefit from smart capabilities at least some of the time. While significant
research has been conducted since the 1980s in the area of smart wheelchair technology, wheelchair
energy usage estimation remains an area of little focus over the past 30 years. This is a critical issue
to electric wheelchair users, especially those using smart wheelchairs to overcome their inability
to operate a chair: without a proper estimate of the energy remaining on the battery pack, users
risk running out of energy and becoming stranded.

The most widely cited wheelchair power estimation paper, A battery state-of-charge indicator
for electric wheelchairs by Aylor et al. [6], is from 1997. Due to increasing adoption of elec-
tric vehicle technologies over the past two decades, power estimation methods have emerged that
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advance on this seminal work. Specifically, current state-of-charge estimation techniques increas-
ingly use a model-based approach to predict the charge remaining on the battery whereas [6] uses
an open-circuit voltage technique. Further, since 1997, only a handful of papers have been written
furthering the field of energy state estimation as applied to electric wheelchairs; discussion of these
is presented in the literature review chapter of this thesis. A large majority of published research
focuses on novel techniques of supplying energy to powered wheelchairs (e.g. hydrogen fuel cells)
and skims the topic of estimating the electric range of the wheelchair.

1.2 Goals

The first goal of this research is to design and build an expandable, robotic electric wheelchair
platform for smart wheelchair research. A donated electric wheelchair was completely stripped of
its components, excluding the frame, its batteries, and its motors. The wheelchair was retrofitted
with new power, computational, sensing, input, and drive-control systems. These modifications
enable the power analysis presented in this thesis, and also provides other researchers with both
a simple ground robot for algorithm development and also a physical platform to mount and test
smart wheelchair technologies.

The second goal of this research is to develop a battery state-of-charge estimator for the elec-
tric wheelchair. To meet this goal, hardware was developed to monitor the power usage by the
wheelchair. This hardware was integrated on to the aforementioned wheelchair platform. Next,
the wheelchair batteries were characterized and an equivalent circuit model was developed. Then,
a state-of-charge estimation algorithm modeling the batteries range similar to a vehicles fuel gauge
- was designed and simulated. Finally, the charge estimation algorithm was realized, verified, and
bench marked on the wheelchair platform.

1.3 Outline of Remaining Chapters

The remainder of this thesis is organized as follows: Chapter 2 provides an overview of smart
wheelchair technologies, energy estimation literature related to powered wheelchairs, and a brief
discussion of relevant battery state-of-charge estimation techniques. In Chapter 3, the design and
development of the wheelchair platform is presented, and a detailed discussion of the power usage
monitoring hardware is given in Chapter 4. Chapter 5 presents the mathematical equations used
to develop the battery model used in this thesis. Chapter 6 briefly discusses the processes used
to characterize and parameterize the wheelchair batteries to fit the model. State-of-charge esti-
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mation methods are expanded upon and discussed in Chapter 7. Testing procedures and system
realization are discussed in Chapter 8 and the estimators results are discussed in Chapter 9. Finally,
conclusions and future works derived from this research are detailed in Chapter 10.
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Chapter 2
Literature Review

2.1 Introduction

The aim of this chapter is to provide a review of past and ongoing research related to the
design, guidance, and automation of electric and/or smart wheelchair technologies. The summary
focuses particularly on power estimation in electric wheelchairs, as there is not yet widespread use
of model-based energy monitoring for electric wheelchairs. Beginning with section 2.2, a review
of existing smart wheelchair technology will be presented. Then, in section 2.3, a review of energy
usage monitoring techniques in electric wheelchairs will be discussed. Finally, section 2.4 reviews
the methods used in battery modeling and State-of-Charge (SOC) prediction.

2.2 Overview of Wheelchair Technology

One can readily find research starting in the late 1980s focused on autonomous and smart
wheelchairs. In this time, various research groups have also constructed numerous smart wheelchairs
for the purpose of realizing sophisticated navigation and localization algorithms designed for
ground robotics [4]. Starting in early 2000s, it appears that a paradigm shift began; namely, re-
search in smart wheelchairs is shifting from autonomy algorithms to shared controlled strategies
and new human interfaces such as pupil tracking and brain-computer interfaces. This shift is a re-
sult of users desire to retain as much of their autonomy for as long as possible [4]. Shared control
systems allow the user to maintain control of their wheelchair system while the onboard computer
prevents dangerous maneuvers and aids users in navigating difficult situations [7, 8].
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2.2.1 Madarasz et al. of Arizona State University

Madarasz and co-authors are regarded in this thesis as the first published instance of an auto-
mated electric wheelchair; the Madarasz electric wheelchair was built by the Arizona State Uni-
versity in the late 1980s [9]. This wheelchair was designed to transport people between rooms
within an active office environment when provided a known destination given prior knowledge
of its present location. Obstacle avoidance algorithms to avoid collisions with persons and other
possible obstructions encountered in a typical office were implemented on the platform to allow
for use in a real world environment. These results are very advanced for the time of publication.

The technology needed for implementation of the above algorithms is revealing in that the
same components are used as today, but of more limited quality due to technological challenges of
the day. The wheelchair platform was an electric wheelchair equipped with an IBM Portable PC, a
128 x 128 pixel digital camera fitted with a wide angle lens, and an ultrasonic rangefinder capable
of scanning a full 360 field-of-view in 3 intervals.

2.2.2 NavChair

Developed in the late 1990s by the University of Michigan, the NavChair demonstrates an ad-
vancement in smart wheelchair research from the Madarasz wheelchair [10]. The NavChair was
capable of operating in three modes: general obstacle avoidance, wall following, and door pas-
sage. The algorithms implemented on the NavChair were notably focused on obstacle avoidance,
including an implementation of vector field histogram (VFH) and minimum vector field histogram
(MVFH) methods; these methods push and pull the wheelchair to or from obstacles to avoid col-
lisions. The NavChair was ultimately developed to explore shared-control strategies, i.e. methods
where both the human and the computer collaborate in decision making and the computer is ca-
pable of adjusting to the humans inputs. This is a nascent development of a new goal of smart
wheelchair research, shifting from the view of a wheelchair as simply a robot conveying a person
to one that interacts with the user.

Technologically, the NavChair was an advancement over the work of the prior decade. It
consisted of an electric wheelchair retrofitted with a DOS-based computing system, the original
joystick, 12 front-facing ultrasonic, and a module containing the necessary support circuitry. The
NavChair is one of the first systems to offer assistance to a user with disability rather than perform
complete autonomy and it is one of the first systems to utilize many parallel sensors for more
advanced decision making.
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2.2.3 LURCH

Developed in 2012 by, A. Bonarini et al. at the Polytechnic University of Milan, LURCH
is a smart wheelchair utilizing a number of human interface and autonomy modes [11]. The
wheelchairs architecture consists of a localization module, a planning module reliant on a modi-
fied A* navigation algorithm, and a control module which uses fuzzy logic to implement trajectory
planning. This platform represents an advancement to the state-of-the-art due to its numerous in-
terface methods. First, the wheelchair utilizes a joystick interface which allows for both manual
driving and shared-control strategies (e.g. a user may not drive into an obstacle). Second, LURCH
utilizes a touch-screen interface for those lacking the dexterity required to use a typical joystick.
The touch screen allows for the selection of low-level commands (e.g. forward, backward, etc.)
and high-level commands (e.g. living room, office, etc.). Third, the system realizes an electromyo-
graphic (EMG) interface system that allows users to send high-level commands to the wheelchair
using facial muscles. Finally, LURCH uses a P300-based brain computer interface to allow highly
disabled persons send high-level commands to the wheelchair using their thoughts alone. This
wheelchair system is one of many [7, 8] that demonstrates the migration in assistive technologies
from using ground robotics techniques for control to collaboratively-controlled robotics.

The LURCH platform also shows technological advances over the 1990s wheelchair models:
it consists of a modified electric wheelchair retrofitted with a LiDAR for obstacle detection, an
upward-facing camera for indoor localization, wheel encoders for odometry measurements, a touch
screen interface, an OCZ-brand game controller to serve as the EMG interface, a BCI system, and
a customized computing system to process sensor data and implement navigation algorithms.

2.2.4 RobChair

The wheelchair developed by Lopes et al. at the University of Coimbra, Polo II in Portugal in
the early 2010s focused on the implementation and refinement of a brain-computer interface [12].
Their ultimate goal was to improve the state of collaborative control research in smart wheelchairs.
The Lopes wheelchair implements a-priori occupancy grid map of the environment for navigation.
To navigate around obstacles encountered, the wheelchair utilizes an enhanced vector field his-
togram method, similar to that implemented by the NavChair. To find its location within the map,
a grid Markov localization system was realized; this system relies on a grid of posterior, discrete
probabilities updated with sensor data collected as the RobChair moves. A P300-based brain-
computer interface provided seven possible user-selected commands as inputs for the wheelchair.
A two-layer controller was used to provide inputs to the wheelchair. The first layer, a Virtual-
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Constraint Layer (VCL), constrains possible user selections based upon given situations (e.g. ob-
stacles). The second layer, the intent matching layer, predicts the users next input based upon
possible options, as described in the VCL, localization data, and prior user input.

The RobChair design reflects the current approach of using a very large number of parallel
sensors on smart wheelchairs. It consists of an electric wheelchair retrofitted with 12 IR proximity
sensors, 12 IR rangefinders, an ultrasonic rangefinder system, a LiDAR system, low-resolution
cameras, a magnetic sensor ruler, and the brain-computer interface system [13].

2.2.5 The Matt Barnes Wheelchair

In response to the need for a robotic platform and the desire to do autonomous wheelchair
research in the Intelligent Vehicles and Systems Group at Penn State, Matt Barnes constructed an-
other autonomous wheelchair platform [14]. This platform consisted of an onboard computer sys-
tem running ROS, wheel encoders, a Hokoyo brand LiDAR module, and an xPC. This wheelchair
provided the basis for the wheelchair to be presented in this research. This wheelchair was one of
the first wheelchairs relying on ROS to manage algorithm execution, sensor interfaces, and data
capture.

2.3 Overview of Energy Estimation in Electric Wheelchairs

As demonstrated in section 2.2, significant research has been conducted in the area of intelligent
electric wheelchairs. Notably absent from the literature is a large amount of research aimed at
energy estimation and power wheelchair electric range. Exceptions include the research conducted
by Cooper et al. to determine the driving habits of electric wheelchair users. Their research showed
that average powered-wheelchair users may travel less than 8 km per day [15]. However, [15] did
not include information regarding the electric range or number of recharges for a given day; only
estimates based upon a users daily driving habits were presented. In a follow-up work, Cooper et

al. estimates the electric range of multiple wheelchairs; however, no general consensus is presented
as the ranges vary from 23.6 km to 57.7 km [16].

Aylor et al. designed a simple approach to estimate the State-of-Charge (SOC) of the battery by
measuring the open circuit voltage (OCV) of a wheelchairs battery [6]. For the early 1990s, their
estimator yielded results comparable to industrial battery fuel gauges for level surfaces. However,
on sloped surfaces, this technique lost some of its initially determined accuracy. The methods
developed by Aylor et al. are presently the most widely cited methods in electric wheelchair battery
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SOC estimation. Chen et al. developed a system to estimate the remaining SOC and electric range
on a wheelchair battery using fuzzy logic and neural networks [17]. Their results indicated these
methods are feasible on electric wheelchairs; however, these methods are atypical in the area of
battery research which typically prefers a model-based approach for energy estimation. Further,
Chen et al. used a lithium ion battery as their energy source, whereas most wheelchairs use lead
acid batteries as energy sources.

In recent years, additional methods of extending battery capacity in wheelchairs have been
presented. Bouquain et al. presented a method to extend the range of an electric wheelchair by
using a hydrogen fuel cell and a DC-to-DC converter to provide constant power to a wheelchair
with slowly changing dynamics (e.g. constant velocity, straight line motion) [18]. As dynamics
increase (e.g. sudden turns), a lead acid battery will source power to the wheelchair while the
fuel cell builds up the desired power. Yang et al. presented a different hybrid hydrogen fuel
cell and battery wheelchair power supply [19]. The authors proposed a system where a primary
battery is sourcing power to the wheelchairs drive train while a secondary battery is either idling
or being recharged by the hydrogen fuel cell. When the primary battery′s voltage decreases below
a particular cutoff voltage, the battery packs switch roles; the secondary battery sources current to
the drive train and the primary battery pack is recharged by the hydrogen fuel cell.

2.4 Battery State Estimation Techniques

Since the advent of smart phones, portable devices, and electric vehicles, both consumers and
researchers alike have yearned for improved means of predicting the remaining state of charge
on a battery pack. As a result, noteworthy literature in the area of battery state estimation exists.
Battery estimation literature tends to focus on methods of modeling, parameter determination and,
estimation techniques. For accessibility, this section will be split into sections discussing modeling,
estimation, and parameterization. It must be noted that this section is not a meant to provide a
comprehensive review, but rather a brief synopsis to present some of the methods necessary in
understanding battery estimation.

2.4.1 Modeling

In the area of battery modeling, there exists two primary types of models: physics-based mod-
els and equivalent circuit-based models. Physics-based models attempt to predict the molecular
interactions occurring within the battery, whereas equivalent circuit models treat batteries as a
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combination of series-connected, passive circuit components. For the past fifteen years, circuit-
based models have been the most widely used models in battery estimation [20]. For the purpose
of this research, only equivalent circuit models will be investigated.

Zhu et al. proposed a 4th-order equivalent circuit model for modeling lead-acid batteries [21].
This model consisted of an ideal power source whose voltage would drop linearly with deple-
tion in SOC and three passive circuit networks. The first, purely resistive network, modeled the
battery′s internal resistance. The final two networks, comprised of a parallel connected capacitor
and resistor, modeled the packs first and second order dynamics. Coleman, et al., proposed an
identical circuit design for modeling lead acid batteries [22]. Figure 5.1 presents an example of an
equivalent circuit model.

Figure 2.1: An example equivalent circuit battery model, specifically a second order model.

Zhu et al. further suggested to improve system dynamics, more series-connected, parallel RC
pairs could be added to the model. Weng et al. investigated the higher-order models and discussed
the negligible improvements and exponential computational costs incurred as more RC pairs are
included [23]; [24] agrees with these stipulations.

Plett proposed a simplified model to that suggested in [21]; this model consists of one fewer
series-connected RC component but proposes the use of a variable-impedance term to model hys-
teresis [24, 25, 26]. A later paper by Coleman et al. suggest a model identical to [24, 26], but
ignores the hysteresis term [27] as they stipulate that an advanced estimator, such as an Extended
Kalman Filter, may compensate for the dropped hysteresis term. Fortunately, [20, 24, 26, 28] agree
that one of the largest sources of SOC estimator error is the estimator performance in the presence
of noise and un-modeled dynamics, and thus, if a high-performing estimator is available, the hys-
teresis term may be ignored allowing lower-order models to be used while still obtaining sufficient
accuracy.
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2.4.2 Parameterization

After resolving a battery model, the models parameters need to be identified. According to
[24], the first parameter to resolve is the battery′s Open Circuit Voltage (OCV) curve. The OCV
curve is the voltage measured across the battery pack when the pack experiences little-to-no load
after a long resting period. This load is typically defined as 0.1C, where C is the capacity of the
battery under its typical load as defined by its Peukert curve. The OCV curve of a battery is a
decreasing, non-linear function of SOC; the OCV can be determined by drawing a constant, low
current from the battery pack and measuring the voltage across the pack until a cutoff voltage is
reached [24]. Figure 2.2 presents an example OCV-SOC curve.

Figure 2.2: An example Open Circuit Voltage – State-of-Charge Curve. This figure presents an
OCV-SOC curve for a lead-acid battery.

The remaining parameters, particularly the dynamic terms and internal resistance, may be re-
solved using a current pulse test. In a pulse test, an at-rest battery is forced to experience a large,
sudden, draw of current for a short period of time. After the burst duration, the load is removed
and the battery rests until changes in its voltage are negligible. Then, the battery is placed under
load again and the process is repeated until the test has been completed. During this entire process,
the voltage across the battery pack is sampled and stored until the test concludes. Idaho National
Labs proposed the Freedom Car model to characterize a hybrid vehicle′s battery pack [29]; this
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test suggested many quick bursts of current draw over a long period of time. On the other hand,
Coleman et al. suggested a two-pulse test where the duration of rest period between the pulses
was equal to the duration of the pulses′ duration period [27]. After measuring battery dynamics,
many use a linear least squares regression to fit the parameters based on the responses observed
[24, 26, 30]. These dynamics are likely related to the internal ion diffusion within the battery as the
battery is perturbed from equilibrium. The dynamics of this behavior are infinite-order, yet can be
approximated as first-order terms through an equivalent RC circuit within the battery model [24].

Many times temperature compensations are considered in battery modeling [31]. Since tem-
perature conditions surrounding the battery pack are rather constant in this research, the battery′s
behavior dependence on temperature shall not be addressed.

2.4.3 Estimation

Following the formation of a battery model, a method of estimating the charge remaining on
the battery is to be developed. Early systems, such as that proposed in [6] suggested measuring
the battery pack voltage alone. These systems are subject to drift with battery age, can accumulate
errors, and show large transient errors due to a lack of dynamics. Following these methods, many
investigated and continue to research coulomb counters which focus on measuring the charge units
removed from the cell as a function of time [24, 32]. These methods, however, are subject to drift
due battery dynamics and age.

To compensate for battery dynamics and age, many create a battery model and compare the
model′s output voltage with the batter′s measurement. Then, using an estimator, the error between
the model and measurement is minimized, correcting the errors accumulated in the model [24,
33]. A present trend is to use an Extended Kalman Filter to estimate the battery pack′s SOC
[24, 26, 28] as an Extended Kalman Filter (EKF) is capable of linearizing a non-linear system
such as a battery and namely its OCV-SOC curve. However, EKFs are slow to execute and can
be computationally intensive due to linearization [33]. Others have proposed using an Unscented
Kalman Filter (UKF) to estimate SOC [34]. While UKFs estimators yield exceptional results, like
EKFs, they are computationally intensive and therefore costly to implement on many systems [33].
In order to balance computational cost and accuracy, some have proposed the use of a piecewise
estimation scheme; Codeca et al. presented a mixed algorithm that combined Coulomb counting
and estimation via a model-based approach [35]. This research treated the OCV-SOC curve as a
piecewise function. In the non-linear region of the curve, the authors used Coulomb counting for
SOC estimation. In the linear part of the curve, a model-based approach was used to estimate SOC.
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Chapter 3
Wheelchair Hardware Design

3.1 Overview

This chapter will discuss the development of a custom semiautonomous wheelchair platform.
The physical structure, power and safety architecture, computational capabilities, and sensor sys-
tems will be outlined in this chapter. This chapter aims to provide an overview of the present
capabilities of the wheelchair constructed for the purpose of this thesis.

3.2 Wheelchair Hardware

The wheelchair platform used is a modified Jazzy Pride 6 manufactured by Pride Products
Corp. USA and the starting platform is shown in Figure 3.1. The original wheelchair consisted of
a metal wheelchair frame and two 24VDC motors whose maximum current draw did not exceed
30A per channel. To power the wheelchair, two series-connected UB12350 35Ah, 12V batteries
were included. Further, the unmodified wheelchair included a joystick, a 24V DC battery charger,
a proprietary DC motor controller capable of interpreting joystick commands and supplying power
to the drive motors.
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Figure 3.1: The Jazzy Pride 6 Electric Wheelchair by Pride Products Corp., USA.

To retrofit the wheelchair with all of the desired hardware, it needed to first be stripped down
to remove components that were difficult to interface (the motor controller, for example), were
unreliable (power systems), or whose input/output behavior was nonlinear (the joystick). First,
all of the wheelchairs external plastics, electronics, and coverings were removed, leaving only
the frame, batteries, motors, and seat. A new battery box was built around the batteries to create
more storage. A shelving unit was designed and built on the back side of the wheelchair using the
80/20 aluminum framing system and acrylic. Two pieces of 80/20 were mounted vertically from
the shelf to serve as mounts for a GPS and a LiDAR module. Around the wheelchair′s edges, an
80/20 frame was installed to allow for more sensors to be mounted. Figures 3.2 and 3.3 display
completed views of the wheelchair. More pictures of the wheelchair can be found in Appendix A.
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Figure 3.2: Side view of the autonomous wheelchair platform
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Figure 3.3: Rear view of the autonomous wheelchair platform

3.3 Power and Safety Architecture

The original wheelchair relied entirely on a single 24V rail provided by the battery system. The
modified wheelchair required both a 24V rail and a 12V rail. Further, this power system needed to
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automatically select to draw power from the battery pack or from a DC power supply as to allow
for computational work without complete battery depletion. To implement the aforementioned
system, two 12V series-connected batteries were installed in the wheelchair. A switch was placed
between the batteries to break the series connection and to prevent parasitic currents from being
drawn when the chair is not in use.

In parallel with the output of the battery pack, the original 24V lead-acid battery charger was
installed. In series with the primary output of the battery pack, two 50A fuses were installed to
limit current draw should there be a short within the power system. A current sensor was series-
connected to the output of the battery pack to monitor the current leaving the pack. To monitor the
voltage across the pack, a voltage sensor was installed1. Then, the output of the battery pack was
split to source current for the 24V rail and the 12V rail. To simplify this discussion, the remaining
power system will be described in two parts: the computing and sensing (12V) and the drivetrain
(24V) systems. Figure 3.4 displays the power system with the aformentioned modifications.

Figure 3.4: High-level schematic of the power system depicting the batteries, battery pack charger,
and power subsystems

1Since chapter 4 focuses on the design and characterization of the voltage and current sensors, chapter three will
not further describe these two components
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3.3.1 Drivetrain

A key function of the power system is to supply current to the wheelchairs drive train. The
output of the batteries is series-connected to a 45A fuse, an enable switch, and an emergency
power shut off switch. Figure 3.5 highlights this emergency switch.

Figure 3.5: The emergency stop switch. This switch cuts power to the drivetrain system while
leaving the computing system fully powered on.

A diode reverse-wired is parallel-connected to the 45A fuse to prevent fly-back currents. A 2k
resistor is parallel-connected to both switches. The resistors and diodes were installed to allow for
regenerative current from the motor controller to flow to ground during an emergency stop. The
motor controller, a Roboteq MDC2230 shown in Figure 3.6, was series-connected to the output of
the emergency power shut-off switch.

Figure 3.6: The Roboteq MDC2230 dual-channel brushed DC motor controller. Each channel can
source a peak continuous current of 50A.

Both motors were connected to the motor controller, each via its own independently controlled
channel. The MDC2230 motor controller requires an isolated 12V power source to power its logic
circuitry. This allows the motor controller to function even in the event of a fault on the 24V line.
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Since drawing from the 12V rail would create a ground fault loop, a second battery was installed
on the wheelchair. This external 12V battery was series-connected to a 1A fuse, a 1A switch, and
the motor controller. Figure 3.7 depicts the drivetrain power system diagram.

Figure 3.7: Schematic of the drivetrain depicting the safety switches, the motor controller, the
secondary battery, and the motors.

3.3.2 Computing and Sensing

The second function of the wheelchair′s power system is to supply power to the computing and
sensing resources on the chair. The output of the 24V battery pack is series-connected to a Samlex
SDC-30 24V to 12V DC-DC converter to step down the voltage from 24V to 12V. The output
of the converter connects to the battery input on the ISOpwr by West Mountain Radio, shown in
Figure 3.8.

Figure 3.8: The ISOPwr by West Mountain Radio, USA. This device is able to switch between the
power supply and the battery pack. Whenever the power supply is energized, the supply sources
the system current, else, current is drawn from the battery pack.
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A 12V, 40A DC power supply was mounted on the wheelchair and connected to the PS input

on the ISOpwr. The ISOpwr draws current from the energized power supply and automatically
switches to battery power when the power supply is shut off. The ISOpwr automatically switches
back to the power supply when the supply is re-energized. The output of the ISOpwr is series-
connected to a 30A fuse, a 30A enable switch, and a PWRGuard Plus by West Mountain Radio.
The ISOpwr was used to allow researchers to work on the computing and sensing system without
draining the battery; in other words, the wheelchair could draw current from a wall socket or
from the battery pack depending on the needs of the moment. The PWRGuard Plus, depicted
in Figure 3.9, prevents over and under voltage conditions from damaging the computational and
sensing system by disabling its output if the voltage falls below or above 11V and 15V, respectively.

Figure 3.9: The PWRGuard Plus by West Mountain Radio, USA. This device provides over current
protection as well as over and under voltage protection to the computing and sensing system.

A West Mountain Radio RigRunner 4500i is series connected to the output of the PWRGuard
Plus. The RigRunner, displayed in Figure 3.10, distributes the power from the 12V rail to the
computer system, a powered USB port, and pair of DC-DC converters providing 3.3VDC and
5VDC to sensors. Figure 3.11 provides a schematic of this system.

Figure 3.10: The RigRunner 4000i by West Mountain Radio, USA. This device acts as a circuit
breaker, power distribution, and power monitor for the computing and sensing system.
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Figure 3.11: Schematic of the computing and sensing system depicting the enable switches, exter-
nal power supply, voltage and current protection, and power distribution.

3.4 Computational

To control the wheelchair, a custom-built small form factor computer system was installed.
This computer system′s specifications are described in Table 3.1.

Hardware Specification Value
Processor Intel Core i5, Haswell Quad Core 2.9GHz

RAM 16GB DDR3 RAM
Hard Drive 180GB SSD

GPU Intel Integrated Graphics
USB Ports 2x USB 3.0, 5x USB 2.0

Other Interfaces 2x RS232, 2x RJ45, 1x DVI, 1x HDMI, 1x VGA
Power Supply 180W

Table 3.1: Specifications for the custom-built computer on the wheelchair platform

Ubuntu 13.04 LTS, a version of Linux, was installed on the wheelchair′s computer. Ubuntu was
selected because ROS, the Robotic Operating System, was developed to run on Ubuntu. ROS, is
a widely used, open-source software developed by Stanford University and Willow Garage; ROS
provides a simple frame work for sensors to communicate with a computer system and allows
users an easy method of quickly testing complex robotic platforms [36]. ROS is comprised of
a series of regularly updated open-source libraries that serve as the systems framework. A user
defines a series of nodes, or small programs, to perform a variety of tasks within ROS. Nodes can
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transmit data by publishing ROS messages and read data by subscribing to a given publisher. This
publisher-subscriber architecture also allows for users to easily read data from a given node for
debugging or save published data for later processing. ROS nodes are written in either Python or
C++, thus allowing easy modifications of the wheelchair control software.

To sample analog data from sensors and receive data from sensors reliant on GPIO buses or
communication protocols such as I2C or SPI, Arduino Uno microcontrollers were used. The Ar-
duino, shown in Figure 3.12, is a simple, open-source, hobbyist microcontroller with an onboard
10-bit ADC, 5-52 digital I/O lines, serial communication capabilities, and a simple-to-use pro-
gramming environment [37].

Figure 3.12: The Arduino Uno Microcontroller, a low-cost hobbyist microcontroller.

The Arduino′s simple interface and wide gamut of capabilities made it perfect for use with the
wheelchair platform. Further, the Arduino can be directly interfaced to the ROS host, thus allowing
the Arduino to act as either a low-cost data acquisition system or interface module for sensors.

3.5 Sensors

The wheelchair was retrofitted with a variety of sensors to interpret its environment. To mon-
itor wheelchair odometry, one US Digital HB6M 10,000 count-per-revolution optical encoder, as
depicted in Figure 3.13, was installed on each motor′s rear axel.
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Figure 3.13: The US Digital HB6M 10,000 CPR optical encoder selected to be mounted on the
rear axle of the wheelchair′s motors.

To read encoder data a custom interface based on an Arduino was used. These encoders were
selected for their simple electrical and mechanical interfaces, rugged casing, and high precision
[38].

To map the environment for subsequent navigation, a Hokoyu URF-04LX LiDAR was selected
and mounted on the wheelchair. Figure 3.14 depicts this device.

Figure 3.14: The Hokoyu URF-04LX LiDAR module used to map the environment around the
wheelchair.

The LiDAR was mounted at a slight downward facing angle on the taller of two masts installed
on the wheelchair. The URG-04LX has a detectable range of up to 4 meters, a scanning rate of
10Hz, and a 240◦ field of view with 0.36◦ angular resolution [39]. Figure 3.15 depicts the location
of the LiDAR and other sensors on the wheelchair.
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Figure 3.15: This side view of the wheelchair depicts A) the LiDAR′s position, B) the PING)))′s
location, C) the position of the Hemisphere GPS, and D) the location of the Apem joystick

An array of Parallax PING))) ultrasonic range finders were installed around the wheelchair′s
perimeter to detect positive obstacles such as people and furniture or negative obstacles such as
curbs or potholes. These sensors, shown in Figure 3.16 , rely on a 40 kHz ultrasonic pulse and
are capable of detecting objects within the range 3cm to 3m [40]. These sensors were selected for
their aforementioned capabilities, low-cost, and their simple interface. The mounting of some of
these sensors are depicted in Figure 3.15.
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Figure 3.16: The Parallax PING))) Ultrasonic rangefinder used to detect small obstacles and ob-
jects in areas not visible to the LiDAR.

For outdoor localization, a Hemisphere A325 Smart GPS, shown in Figure 3.17, was installed
on the wheelchair. The Hemisphere was installed on the shorter of the two masts on the wheelchair,
as shown in Figure 3.15.

Figure 3.17: The Hemisphere A325 Smart GPS used for outdoor localization and navigation.

The Hemisphere A325 is capable of providing real-time kinematic localization data with preci-
sion of 2 cm. This GPS was installed on the wheelchair for its technical specifications and to allow
for research to be conducted outdoors; many smart wheelchairs have been equipped for indoor use
and few have been retrofitted for outdoor use [41].

Since the included joystick was unable to be re-engineered and had a large nonlinear dead-zone
about the zero joystick input range, a new joystick was selected and installed on the wheelchair.
The joystick selected, shown in Figure 3.18, was a HF11S10U, 2-axis Hall Effect USB joystick by
Apem Inc.
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Figure 3.18: The Apem 2-axis Hall Effect USB joystick used for manual control and navigation.

This joystick was selected for two reasons: first, the APEM joystick relies on Hall Effect
sensors, therefore making it more accurate and less susceptible to noise when compared to its
potentiometer-based counterparts. Second, this joystick relies on the Human Interface Device
(HID) standard for communication with the computer system, thus making it very reliable and
easy to integrate [42]. The location of the joystick is highlighted in Figure 3.15.

For a detailed design of the wheelchair′s sensor architecture, including a few sensors not rel-
evant to this research, refer to Appendix B. Further, Appendix B includes further detail of the
schematics presented in Figures 3.4, 3.7, and 3.11.
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Chapter 4
DAQ Hardware Design

4.1 Overview

Critical to this research was the development of a high-fidelity power monitoring system. To
monitor the wheelchair′s State of Charge (SOC), it was necessary to monitor the current leaving
the battery pack and the voltage across the battery pack. This chapter details the specification of
the Data Acquisition system (DAQ) developed to sample and send the data from the voltage and
current sensors to the wheelchair′s computer. Furthermore, this chapter details the development
and characterization of the voltage and current sensors.

4.2 Data Acquisition Hardware

As discussed in chapter 3, an Arduino was selected to serve as the interface between both
analog and digital sensors. Initial testing indicated that the Arduino was capable of transferring
data from its Analog-to-Digital (ADC) converted to the wheelchair′s computer at desired speeds;
however, testing also indicated that the Arduino′s ADC was not yielding enough precision. As prior
mentioned, the Arduino uses a 10-bit ADC, meaning the Arduino could resolve analog voltages up
to +/- 0.0049V.

To improve this accuracy, an external ADC was selected. The Texas Instruments ADS1115
ADC, populated on a breakout board by Adafruit Inc., was selected. This breakout board is shown
in Figure 4.1.
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Figure 4.1: The Texas Instruments ADS1115 Analog-to-Digital Converter mounted on a Pololu
brand breakout board.

The ADS1115 was selected for its high precision, pre-written Arduino drivers, speed, and
number of channels. Table 4.1 presents the specifications and options used on the ADS1115 and
Figure 4.2 presents a schematic describing the ADC and the other sensors.

DAQ Specification Value
Resolution 16-bits, 7E-5V
Channels 4

Sampling Frequency 80Hz

Table 4.1: Specifications for the power monitoring DAQ, focused on the ADS1115
ADC specifications
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Figure 4.2: The power monitoring system schematic. A) Depicts the ADC, B) depicts the voltage
sensor, C) depicts the current sensor.

4.3 Voltage Sensor

The ADS1115 can sample voltages from 0-5V in configuration described in Figure 4.2; there-
fore, the voltage needed to be scaled from 0-26V to 0-5V. To scale the voltage, a voltage divider
was designed. The output of the voltage divider was connected to a single-rail op amp to remove
any loading effects created by the ADC. This circuitry is highlighted in Figure 4.2. To characterize
the voltage sensor, a calibrated DC power supply was connected to the input of the sensor. Then,
the sensor was characterized over 0.00V to 30.00V in 0.50V steps. At each step, 250 samples were
saved using the DAQ described in section 4.2. The results of this test can be found in Figure 4.3.
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Figure 4.3: Calibration results and linear regression fit for the voltage sensor

To relate sampled voltage and raw ADC values, a linear regression was used and the results of
this regression are displayed in (4.1).

V =
sample− 139

425
[V ] (4.1)

r2 = 0.99

The code used to process the voltage sensor data can be found in Appendix C.1.

4.4 Current Sensor

To measure the current leaving the battery pack, the LEM CKSR50NP was selected; Figure 4.4
displays this sensor. This sensor was selected for low noise margins, high response time, simple
interface, and common usage within industry. Figure 4.2 highlights this section.
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Figure 4.4: The LEM CKSR50NP current transducer (sensor), unmounted.

Similar to the voltage sensor, the current sensor required calibration. To calibrate the current
sensor, the sensor was connected in series to a DC current source and an electronic load. The
sensor was characterized from 0.00A, to 30.00A in 0.25A steps. At each step, 250 samples were
saved using the DAQ described in section 4.2. The results of this test can be found in Figure 4.5.

Figure 4.5: Calibration and linear regression fit for the LEM CKSR50NP current transducer
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To relate sampled current and raw ADC values, a linear regression was used and the results of

this regression are displayed in (4.2).

I =
sample− 13318

69
[A] (4.2)

r2 = 0.99

The code used to process the current sensor data can be found in Appendix C.2.

Figure 4.6 depicts an image of the completed circuit containing all of the hardware described
in Figure 4.2.

Figure 4.6: Constructed DAQ system. Not pictured: current sensor
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Chapter 5
Battery Models

5.1 Overview

A battery′s SOC cannot be physically observed in practical applications. Therefore, to observe
SOC, a battery model is necessary. This chapter will review the implemented battery model and
the derivations necessary to transform the model into state-space form.

5.2 Battery Model

An equivalent circuit model, based on those seen in [24, 27], was used to model the battery
pack. For this model, an ideal power source is series-connected to a resistor, a parallel-connected
resistor-capacitor network, and the load. The ideal power source′s voltage is assumed to be alge-
braically dependent on the battery′s SOC. Figure 5.1 presents a schematic drawing of this model.

Figure 5.1: The second order equivalent circuit battery model

The ideal power source models the drop in voltage associated with the loss of charge on the
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battery. The single resistor models the internal battery resistance due to the wire, electrochemical
resistance, and hardware connecting the cells within battery pack. The RC pair models the battery
pack′s dynamics. Finally, the load component models the system drawing current from the pack.
The initial use of this model does not consider the battery′s non-linearities; rather, it is initially
assumed that the battery′s dependence on SOC is linear, which is shown later to be a good ap-
proximation for most of the operating range of the battery. Chapter 7 will detail the methods used
to consider the non-linearities not described by this model which become pronounced during the
extreme high and low levels of a battery′s SOC curve.

Measuring at the positive and negative terminals of the load is akin to measuring the voltage
across the positive and negative terminals of the battery while the pack is installed in the wheelchair
system. This model provides a simple method to represent battery behavior; it does not indicate
the difficulty measuring behavior of the components within a battery pack, nor the idealization
of complex behavior into specific components. As a result, it must be emphasized that only the
voltage across the load can be measured and the other components must be estimated.

Using Kirchoff’s Voltage law on the model, the voltage, Vload, is presented in (5.1).

Vload = VOCV −RintI(t) − VCT (5.1)

Where I(t) represents the current flowing from the battery pack to the wheelchair system and
VCT represents the voltage across the RC network.

VOCV is a function of the battery’s SOC and (5.2) presents this function.

VOCV (SOC) = SOCα + µ (5.2)

Where α relates SOC to voltage and µ represents the cutoff voltage of the battery pack. Since
only current and voltage can be directly measured, a function relating SOC to current is presented
in (5.3).

SOC = 1 − 1

Q0

∫ t

t0

I(τ)dτ (5.3)

5.3 State-Space Representation of the Battery Model

To practically implement the model described by (5.1), (5.2), and (5.3), these functions must
be transformed into State-Space representation, as described in standard form shown in (5.4-5).
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ẋ = Ax+Bu (5.4)

y = Cx+Du (5.5)

To transform the functions into the form presented in (5.4-5), the states, or energy storage
components for this model, must be identified. For this simplified model, the derivative of the
energy states in this system are: ˙SOC and V̇CT . The first state represents SOC, or remaining
energy, of the battery. The second state, VCT , represents the voltage across the RC pair, or the
energy stored in the capacitor.

Equation (5.3) represents the SOC state. The state equation, (5.6), is found by differentiating
(5.3).

˙SOC = − 1

Q0

I(t) (5.6)

It must be noted that this state equation only depends on the input to the system and does
not depend on any other states. In the system dynamic model, this represents a pure-integrator
dynamic.

To derive the V̇CT state, one must look at the parallel RC pair in Figure 5.1. The voltage across
the resistor and the capacitor remains the same, but the current does not. Therefore it is useful to
follow Kirchoff′s Current Law about the parallel pair (5.7).

I(t) = IRCT
(t) + ICCT

(t) (5.7)

Next, substituting the definitions for current through a resistor and a capacitor into (5.7), one
can obtain equation (5.8).

I(t) =
VCT
RCT

+ ˙VCTCCT (5.8)

Through algebraic manipulation, the state equation is derived from (5.8) and presented in (5.9).

˙VCT = −VCT
τCT

+
I(t)

CCT
(5.9)

Where τCT represents the product of CCT and RCT .
The output equation of the system was presented in (5.1), and substituting values into (5.1)

from (5.2) and, yields equation (5.10).
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Vload = αSOC + µ−RintI(t) − VCT (5.10)

The state vector, x, is displayed in (5.11), the input function, u(t), is presented in (5.12), and
the output variable, y, is defined in (5.13).

x =

(
VCT

SOC

)
(5.11)

u(t) =

(
I(t)

µ

)
(5.12)

y(t) = Vload (5.13)

Now, that the state equations and output equations have been derived, they can be transformed
into state-space form, as presented in (5.14-15).

ẋ =

(
− 1
τCT

0

0 0

)
x+

(
1

CCT
0

− 1
Q0

0

)
u(t) (5.14)

y(t) =
(
−1 α

)
x+

(
−Rint 1

)
u(t) (5.15)

Before implementing the model shown in (5.14-15) within a Kalman Filter, the equations are
first discretized. Since sampled data serve as the inputs to this model, a discrete-time model was
derived using a Zero Order Hold (ZoH); equation (5.16-19) presents the results of this method [43]

Ad = eAT (5.16)

Bd = (

∫ T

τ=0

eAτdτ)B (5.17)

Cd = C (5.18)

Dd = D (5.19)

where T represents the sampling period of the DAQ.
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Chapter 6
Battery Parametrization

6.1 Overview

In order for the model derived in Chapter 5 to be usable, the parameters within the model
needed to be identified. This process can be described in two stages: capturing the open-circuit
voltage State-of-Charge curve and determining dynamic model coefficients via the current pulse
test. This chapter aims to describe the aforementioned processes and how they were used to iden-
tify the battery models parameters.

6.2 The Open-Circuit Voltage-State of Charge Curve

Equation (5.14-15) presents a relationship between the battery′s SOC and its open-circuit volt-
age. To find this relationship, the battery pack was first fully charged. Next it was slowly dis-
charged at a constant rate until the cutoff voltage has been met. The cutoff voltage is defined by
the absolute lowest voltage a battery pack may reach before damage to the pack or significant losses
in capacity are incurred. Typically, the cutoff voltage is provided by the battery′s manufacturer in
the datasheet.

To perform a discharge test, the battery pack was connected to an electronic load. A relay
circuit was series-connected between the battery and the load to ensure that discharging of the
battery would cease once the voltage fell below the cutoff voltage. Finally, the DAQ described in
Chapter 4 was connected to the pack for data acquisition. Figure 6.1 presents a diagram describing
the hardware configuration for this test.
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Figure 6.1: Rig used to characterize the battery′s OCV-SOC curve.

The DAQ sampled the pack′s voltage at 80Hz until the completion of the test. Finally, all
interconnects between devices were tightly bound and coated in a dielectric grease to ensure the
best possible connection.

The discharge testing requires caution: a discharge too slow will take too long for the test,
whereas a discharge that is too fast can cause excitation of battery dynamics or even damage to the
battery. To determine an appropriate discharge rate, the battery′s predicted capacity can be used;
for the wheelchair battery, this is approximately 28 Ah [44]. The battery must be discharged a
rate of 0.1 times the capacity or less to properly sample the voltages needed to generate the pack′s
OCV-SOC curve [24]. A discharge rate of 1A was selected to discharge the battery pack, as this
rate balanced an acceptable discharge time versus fidelity in measuring the OCV battery behavior.
To capture the data needed to form the OCV versus SOC curve, the battery pack was fully charged
and allowed to rest. Then, the pack was connected to the system described in Figure 6.1 and the
discharge began. The discharge ended when the cutoff voltage was met and the relay opened the
circuit. Finally, the data captured was saved and stored for processing. This test was performed
three times and Figures 6.2, 6.3, and 6.4 present the results of the three discharge tests.

Figure 6.2: First discharge OCV-SOC curve.
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Figure 6.3: Second discharge OCV-SOC curve.

Figure 6.4: Third discharge OCV-SOC curve.

As mentioned, only the linear region of the battery′s OSC-SOC curve is used in later models
for estimation. As a result, the non-linear regions of the battery were ignored when determining
the parameters discussed in equations (5.14-15). By inspection, the linear region of the OCV-SOC
curve was defined as the region between 0.1 and 0.9 SOC. After truncating the data for the three
data sets between these SOC ranges, a linear regression was performed to find α and µ. Figure 6.5
presents the linear region of the three curves and the resulting regression line.
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Figure 6.5: Presented are the linear regions of the three OCV-SOC discharge tests and the average
of the three curves.

Since the battery was discharged from fully-charged to complete-discharge, the battery′s ca-
pacity was also determined. This capacity value, Q0 considers the entirety of the OCV-SOC curve
and is necessary for SOC estimation in both the linear and non-linear regions. Table 6.1 presents
the regression′s parameters and the battery capacity.

Parameter Value
α 2.1569 V/SOC
µ 23.7689 V
r2 0.9968
Q0 1.1070E+05 Coulombs

Table 6.1: Battery model parameters derived from the linear region of the OCV-SOC
Curve

Appendix D.1 presents the MATLAB code used to process the OCV data, perform the regres-
sion, and generate the plots shown in Figures 6.2 – 6.4.
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6.3 The Current Pulse Test and Least Squares Regression

The parameters in section 6.2 describe the battery′s transient response while operating in the
linear region of the OCV-SOC curve. For low, constant-current draw systems, the regression pa-
rameters presented in Table 6.1 would be the only terms necessary for SOC estimation. However,
the wheelchair system does not draw power via low and constant currents; the wheelchair′s cur-
rent draw will vary significantly with wheelchair velocity, surface incline, and surface type among
other things.

Because the battery voltage will react to any sudden changes in current, it is important to
characterize the battery′s response to sudden changes in current draw, i.e. the battery dynamics. To
characterize the battery dynamics, a current pulse test is used in this study. A pulse test holds the
battery at rest for an extended period, then suddenly changes the current draw of the battery from no
current draw to a current draw equal to a fraction of the pack′s typical load. This pulse duration lasts
for a set fraction of the battery′s SOC; this allows for the capture of impulse dynamics. The battery
is then allowed to rest for a period of time to characterize settling dynamics. Some pulse tests
suggest using two to three closely-spaced, equal-magnitude pulses of large current to capture the
dynamics [27] whereas others suggest a series of small pulses of similar magnitude spread across
the battery′s entire SOC [26, 29]. To characterize the battery pack in this study, a combination of
both methods was used.

The pulse test as implemented in this thesis starts by first shifting the battery into its linear
region by discharging the pack until its SOC is equal to 80%. The pack is allowed to rest for an
extended period after being discharged into the linear region. Then the pack is discharged using
five pulses: two pulses of 10A and three pulses of 5A spread out across the battery pack′s SOC.
These values were selected because they closely model the rest current draw and average driving
current draw of the wheelchair. Figure 6.6 presents a diagram describing this profile.
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Figure 6.6: The discharge profile used to resolve remaining the battery parameters, specifically,
the pack′s dynamics.

An HP 6050A 1800 Watt electronic load was used to control the current draw from the battery
pack using the profile described in Figure 6.6. The DAQ discussed in CH 4 sampled and stored the
data captured during these tests. Figure 6.7 depicts the hardware used to realize the aforementioned
current profile. Figure 6.8 presents the results of this test.

Figure 6.7: A diagram depicting the hardware used to run the pulse test.
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Figure 6.8: The measured voltage (top) and current (bottom) from the current pulse test.

Using a linear least squares regression and the data presented in Figure 6.8, the remaining free
parameters of the model described in Chapter 5 were fitted. Figure 6.9 presents the results of this
model fit and Table 6.2 defines these parameters.

Parameter Value
τ 305.77 s
Rint 0.108 Ω

CCT 11994 F

Table 6.2: Battery model parameters derived from the least squares regression per-
formed on the current pulse data
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Figure 6.9: The least squares regression fit of the dynamic terms of the battery model.

Appendix D.2 presents the MATLAB code used to process the current-pulse data, perform the
regression, and generate the plots shown in Figures 6.8 and 6.9.
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Chapter 7
State of Charge Estimation

7.1 Overview

This chapter presents the methods used to estimate the wheelchair battery pack′s SOC when the
wheelchair is operating. The estimators are treated differently depending on whether the SOC is in
either the linear and non-linear regions of the battery pack′s OCV-SOC curve; this idea of treating
the OCV-SOC curve as a piecewise function for estimation was first presented by Codeca et al. in
[35]. First, an analog for the model will be presented. Then a discussion for SOC estimation in
both the linear and non-linear regions of the curve will be discussed.

7.2 The Fuel-Gauge Model

The method presented by [35] can be described using an automotive fuel-gauge as an analog.
A vehicle′s fuel gauge remains at full for a long time after the tank has been filled with gasoline.
This occurs to compensate for the non-linearities that occur when measuring fluid volume in a full
container, as discussed in [45]. After a given threshold, the fuel measurements begin to decrease
with a direct relation to remaining fuel volume. Finally, given a second threshold, the fuel gauge
will present empty even as some fuel remains in the tank. This occurs to account for consumers
who prefer to drive their vehicle with little fuel remaining and to account for the non-linearities
associated with measuring fluid volume as the tank is nearly empty.

The fuel-gauge model of a battery SOC model uses a similar approach; a Coulomb counter es-
timates the SOC of the battery pack in the first non-linear region (100% to 90% SOC) of the battery
pack, using only current measurements. Figure 7.1 depicts a diagram presenting this method.
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Figure 7.1: The fuel gauge model: A) represents the non-linear regions in which Coulomb counting
will be implemented for SOC estimation and B) represents the linear regions where a Kalman filter
will be realized for SOC estimation

In the linear region of the pack (90% to 10% SOC), a Kalman Filter predicts the SOC state
from the model presented in Chapter 4, which utilizes both voltage and current measurements. For
this stage of the estimator, the initial guess for the SOC state originates from the aforementioned
Coulomb counter. Finally, when the SOC state falls below the 10% threshold and enters the final
non-linear region (10% to 0% SOC), SOC is again estimated using a Coulomb counter, using only
current. The goal of this gas-gauge model is to effectively avoid using voltage measurements in
the nonlinear region of the OCV-SOC curve, when the voltage to capacity relationship is difficult
to measure or utilize.

7.3 The Coulomb Counter

In the nonlinear regions of the OCV-SOC curve (SOC > 90% SOC or SOC < 10%), Coulomb
counting is used in the fuel-gauge model to estimate the SOC on the battery. Coulomb counting
does not depend on the OCV-SOC curve; it only depends on current draw, battery capacity, and
initial state to predict SOC. This method, while very simple, is very susceptible to drift as it does
not compensate prediction changes due to battery dynamics. The equation shown in (7.1) presents
the Coulomb counter used in this estimator.
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SOC = 1 − 1

Q0

∫ t

0

I(τ)dτ (7.1)

In the first non-linear region, the Coulomb counter′s purpose is to provide the user with a
rough estimate of the SOC of the wheelchair and to provide the initial guess of the SOC state to
the Kalman filter. In this non-linear region, the user can be told they have full charge until the
linear region is entered, just as is done in a typical vehicle fuel gauge.

In the third and final region of the SOC curve, the Coulomb counter will estimate the remaining
charge on the battery. With time, the battery will age and, as a result, its parameters will change
thus yielding a lower overall SOC. In this final SOC region, the user may be told their battery pack
is empty, similar to the fuel gauge, and the SOC estimate can be used to help the user predict when
they should return to a wall charger. Driving in this region of the OCV-SOC curve would be similar
to driving a car when the fuel gauge reads empty.

7.4 The Kalman Filter

In the linear region of the OCV-SOC curve (90% - 10% SOC), this thesis utilized a linear
Kalman Filter as described by [33]. Equations (7.2-7.4) present the prediction and equations (7.5-
7.9) present the measurement update.

x̂k|k−1 = Ax̂k−1|k−1 +Buk−1 (7.2)

Pk|k−1 = APk−1|k−1A
T +Q (7.3)

Q = diag(σ2
VCT

, σ2
SOC) (7.4)

Kk = Pk|kC
T (CPk|k−1C

T +R)−1 (7.5)

ỹk = yk − (Cx̂k|k−1 +Du(k)) (7.6)

x̂k|k = x̂k|k−1 +Kkỹk (7.7)

Pk|k = (I −KkC)Pk|k−1 (7.8)

R = σ2
sens (7.9)

The performance of the Kalman filter described in (7.2-7.9) depends on the Q and R matrices
and assumes the noise found within the system is Gaussian. The Q matrix, or the process noise,
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contains the standard deviations associated with each states′ noise. A state′s noise may come from,
among other things, model mismatch or unforseen system behavior. This matrix is a square matrix
of size n x n where n is the number of states. The R matrix is the measurement noise, or the
noise associated with each sensor. This matrix is assumed to be diagonal, contains the standard
deviations associated with each sensor′s noise, and is of size m x m where m is the number of
inputs.

To develop the R matrix, the noise characteristics of the voltage sensor – the single measure-
ment in this system – needed to be determined. Using the DAQ described in, the voltage sensor
measured the potential of a constant DC supply for a minute after selecting the constant potential.
The RMS error between the true voltage of the supply and the measured potential allowed for the
calculation of the single term in the R matrix. This value was further refined experimentally while
testing the Kalman Filter. Table 7.1 presents the R matrix.

The R matrix further describes the trust in the measurement versus the trust in the model.

Parameter Value
σ2
sens 5.2365

Table 7.1: R matrix values; this value represents the measurement noise

Since the noise for the states in this system is uncolored, the Q matrix is diagonal and each term
along the diagonal describes the noise associated with that state. The noise associated with the
SOC state was derived by calculating the mean RMS error between the derived OCV-SOC curve
presented in Section 6.2 (Table 6.1) and the linear regions of each OCV-SOC curve presented in
Figures 6.2, 6.3, and 6.4. To calculate the error associated with the VCT state, the square of the
difference between the model and the measurement′s best and worst ‘dynamic’ (e.g. the response
during a rest period just after a sudden impulse or change) was used. Specifically, these data were
found in Figure 6.9. Similarly, the aforementioned values were further refined experimentally
while testing the Kalman Filter.

The Q matrix diagonals present not only the noise of each respective state, but also the trust in
the model versus trust in the measurement. The lower the value, the more trust in the model and
the less trust in the measurement. Table 7.2 presents the values along the diagonal of the Q matrix.
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Parameter Value
σ2
SOC 0.0011
σ2
VCT

3.356

Table 7.2: Q matrix values; These values represent the noise associated with the
model′s states
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Chapter 8
Implementation of Estimator

8.1 Overview

In order to verify the functionality of the estimator design, it was realized on the wheelchair
platform and tested. The purpose of this chapter is to present the nuances observed when realizing
the algorithm and to discuss the tests designed to verify the algorithms functionality.

8.2 Implementation of Estimator

The estimator defined in chapter 7 exists as two functions: the coulomb counter and the Kalman
filter. This algorithm was realized using, a series of case statements checking the SOC state to
switch between the coulomb counter and the Kalman filter.

The estimator was simulated and realized in MATLAB. Voltage and current data was captured
from the wheelchair using a ROS bag file. This data was subsequently parsed into an *.csv file for
MATLAB processing.

Appendix E presents the Kalman filters implementation in MATLAB.

8.3 Tests Designed

After fully charging the wheelchair′s battery pack, the wheelchair′s computing hardware was
powered using the external power source in order to have a realistic power load for the wheelchair′s
SOC estimator. Then, once the wheelchair was fully powered on, the estimator was started and
the external power cut. To discharge the batteries, the wheelchair was driven around an office
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environment and a hallway environment. Figure 8.1 depicts a sample hallway environment.

Figure 8.1: This image depicts the hallway outside of 320 Reber building on The Pennsylvania
State University Main Campus. Hallways such as these were used to verify the estimator′s func-
tionality

These environments consist of smooth, level surfaces commonly found in office buildings. To
best model the behavior of a wheelchair user in an office environment, the wheelchair drove up
and down the hallway environment and drove into the office environment to rest. During the rest
period, the only current draw is from the computing system. The wheelchair traversals in the
hallway were not all uniform, as a human user was moving the wheelchair in a hallway. This
illustrates that power draw may vary for a wheelchair depending on average velocity, the presence
of nearby people, operator distractions, or sudden obstacles. The rest periods in the office models
a user working at their desk for extended periods.
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Chapter 9
Estimator Results

9.1 Overview

This chapter presents and discusses the results of the estimation algorithm. Further, this chapter
analyzes the effectiveness of the estimator.

9.2 Discussion of Results

After simulating part of an average wheelchair user’s day, as discussed in Chapter 8, the voltage
and current information was processed. The resulting SOC estimate is presented in Figure 9.1.
The result of the fuel gauge estimator is presented in (blue) and, for comparison, an SOC estimate
using Coulomb counting (red) alone is presented. First, it must be noted that the SOC estimate
does not extend from full charge to full discharge. This occurred because, when the battery was
placed under driving load, the battery voltage would fall below the pack’s cutoff voltage. Since the
estimator was not realized on the wheelchair and run externally the test ended when the majority
of pack voltage readings were below cutoff while driving to prevent damage to the battery pack.

Along the same vein, one will notice variance in slope of the SOC curve. The regions with
the largest slope, namely those around 100 minutes, 250 minutes, and just before 300 minutes, are
instances where the wheelchair was driven. During other time frames, the wheelchair was at rest
or being driven at low speeds.

The estimate from the Coulomb counter and the estimator are very similar; of greatest note,
both SOC estimates end at nearly the same value. The current sensor used presents very low noise
margins and, as a result, little drift. Coulomb counting can, with high fidelity sensors, present a
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reasonable SOC estimate. However, Coulomb counting will not compensate for model mismatch
due to battery aging whereas a Kalman filter is able to compensate for both battery age and lower
fidelity sensors.

Figure 9.1: This figure presents the SOC estimate when using Coulomb Counting (red) and the
fuel gauge model (blue).

Finally, reviewing the estimator’s SOC it is observed that the Coulomb counter’s SOC curve is
smoother; the estimator’s SOC curve contains spikes near the end of the discharge. These spikes
are a result of the Kalman filter’s inability to completely correct for unmodeled battery dynamics.
If a higher-order, non-linear model were used to estimate battery SOC and an Extended Kalman
Filter (EKF) were implemented instead of a linear Kalman Filter, these noise artifacts would be
significantly mitigated if not entirely eliminated.

The estimator is able to track the battery pack voltage with great accuracy, as demonstrated in
Figure 9.2. Clearly evident, the voltage measurement and estimate overlap significantly. However,
the tracking is not perfect. The imperfections arise from the Kalman Filter’s inability to predict
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exact state values; the Kalman Filter is only able to estimate state values and, as a result, will be
unable to fully track any given system.

Figure 9.2: This figure presents the battery pack voltage estimate (red) and the voltage measure-
ment (blue).

Finally, Figure 9.3 presents both the SOC and VCT states on top of one another for direct
comparison. Reviewing the behavior of the VCT state and considering typical capacitor behaviors,
the overall behavior of the VCT state is as predicted by circuit theory. At first, the VCT state’s
voltage is, indeed, negative; this voltage is corrected with time as the Kalman filter continues to
estimate; this correction confirms Kalman filters’ estimates improve over time. Finally, it must
be noted that estimating VCT is very difficult as the voltage across this parallel RC pair has little
physical meaning on the battery pack. There is no RC pair in the battery pack that can be probed
and used for comparison.
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Figure 9.3: This figure presents the SOC (upper) and VCT (lower) state estimates with respect to
time.

The results presented indicate that the estimator designed provides a usable estimate of battery
pack SOC. Furthermore, these results indicate that, if one has a very high fidelity current sensor,
this sort of estimator may not be necessary. However, outside of the research environment where
such sensors may not be cost effective, the estimator derived in this research will be able to provide
the an SOC estimate with accuracy and precision comparable to a high-fidelity sensor. Further-
more, this estimation will be able to account for drift as a result of battery model mismatch, battery
aging, and non-regular current demands.
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Chapter 10
Conclusions

10.1 Overview

This project successfully implemented a model -based SOC estimator on an electric wheelchair.
The estimator was realized in a manner similar to a cars fuel gauge, where the fuel estimates are
purposefully less accurate at the extrema of the fuel levels (e.g. full and empty). This chapter will
present conclusions and possible future expansions.

10.2 Conclusions

This research sought to fill a gap in assistive technology literature in the area of energy predic-
tion for electric wheelchairs. This research may be beneficial to both electric wheelchair users and
researchers alike. Electric wheelchair users will be able to better estimate their electric wheelchairs
range and make informed decisions about when to recharge their batteries. Researchers may use
this work to develop better SOC estimators for electric wheelchairs or use this work to develop
energy-cognizant smart wheelchairs.

One advancement of this work would be to realize an Extended Kalman Filter (EKF) to esti-
mate the SOC on the battery pack across the entire range of the SOC values. The EKF linearizes
a system on every iteration, thus accounting for non-linearities. This approach was not used on
this wheelchair as the aim of this work was to develop an estimator that could be realized on most
electric wheelchairs; most electric wheelchairs have limited computational power and the afore-
mentioned model could be realized on a simple microcontroller, similar to those found on electric
wheelchairs today.
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10.3 Future Work

There still exists a large amount of possible work in the area of energy prediction for electric
and smart wheelchairs. First, algorithms to predict remaining electric range may be investigated to
help users predict remaining distance as opposed to remaining charge. Another possible expansion
of this research involves helping a user not only predict electric range, but also predict if they could
return to their starting point given their current location. This process is known as retro-traversal.

Researchers and smart wheelchair developers may use this research to develop navigation algo-
rithms that account for energy efficiency, traveling distance, and traveling time. Finally, institutions
may build upon this research by using this system to measure the power needed to travel and retro-
traverse common paths and generate maps displaying powered wheelchair energy requirements.
Such maps may be useful to users so that they may make informed decisions about the path they
would like to use to move between two locations, such that energy-aware choices can be made.
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Appendix A
Appendix A

The following is a collection of images of the wheelchair system. They are in no particular
order.

Figure A.1: Side view of the wheelchair
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Figure A.2: Semi-oblique view of the wheelchair

Figure A.3: Front-on view of the wheelchair
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Figure A.4: Seat of the wheelchair

Figure A.5: Wheelchair joystick and mount

Figure A.6: Emergency stop, LCD indicator, and secondary joystick (for show only).
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Figure A.7: Back view of the wheelchair

Figure A.8: Top-down view of the wheelchair’s top shelf
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Figure A.9: Side view of the wheelchair’s shelf (computer powered on)
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Appendix B
Appendix B

The following are the schematics designed for the power and sensor architecture to run the
wheelchair. Each schematic has a unique key.

Each schematic contains a unique key to identify the the components and wiring type. The first
schematic is the main power system schematic, the second contains information for the drive train
power system, the third describes the power system for the computing and sensing system, and the
fourth schematic breaks down the sensor architecture.
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Figure B.1: Main power system schematic
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Figure B.2: Drive train power system schematic
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Figure B.3: Computing and sensing power system schematic
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Figure B.4: Sensor interconnect schematic
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Appendix C
Appendix C

The following includes the code used to characterize the voltage and current sensors. This
section also includes the code used to capture the data; the capture code varied slightly depending
on the sensor. The code provided was used to capture data from the current sensor. .

C.1 Voltage Sensor

The following includes the code used to capture and characterize the current sensor.

1 % Data Procesing for Characterization

2 % Christopher Miller

3 % Created on: 6/16/2015

4 % Modified: 6/16/2015

5

6 clc

7 close all

8 clear all

9 clc

10

11 %Read in the data file

12 filename = '2015_06_15_rawcounts24VSensor.csv';

13 data = csvread(filename);

14

15 %Convert the file to a 2xn vector

16

17 dim1 = 250; %Number of points
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18 dim2 = 118; %Number of measurements

19

20 %Variables to store data

21 raw_vals = zeros(dim1*dim2/2,2);

22

23 %counters

24 x = 1;

25 j = 1;

26

27 %Transform the csv file

28 while j < dim2

29 for i = 1:dim1

30 raw_vals(x,1) = data(i, j);

31 raw_vals(x,2) = data(i, j + 1);

32 x = x + 1;

33 end

34 j = j + 2;

35 end

36

37 %Calculate std devs per measurement value

38 stddevs = zeros(dim2/2,2);

39 covars = zeros(dim2/2,2);

40

41 %Counters and variables for parsing the data

42 j = 1;

43

44 %Measurement step sizes

45 init_val = 1;

46 max_val = 30;

47 step_size = .5;

48 val = init_val;

49

50 %min/max value for std/cov windows

51 window_size = dim1;

52 min = 1;

53 max = window_size;

54

55 %Calculate sensor mean

56 %sen_mean = round(mean(1 - raw_vals(min:max,1)));

57

58 while j < dim2 / 2 + 1
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59 %Calculate standard deviation and covariance

60 stddevs(j,1) = val;

61 stddevs(j,2) = std(raw_vals(min:max ,1));

62 covars(j,1) = val;

63 covars(j,2) = cov(raw_vals(min:max ,1));

64

65 %Increment the counters

66 val = val + step_size;

67 min = min + window_size;

68 max = max + window_size;

69 j = j + 1;

70 end

71

72 %Average statistics

73 unfixed_stddev = mean(stddevs(:,2));

74 unfixed_covars = mean(covars(:,2));

75

76 %Plot the standard deviations for the Voltage sensor values

77 figure(1);

78 hold on;

79 plot(stddevs(:,1), stddevs(:,2), '*')

80 title('Standard Deviations v. Voltage (24V Sensor)');

81 xlabel('Voltage in .5V steps (V)')

82 ylabel('Standard Deviation (unitless)')

83 mean_val = num2str(unfixed_stddev);

84 s = strcat('Average Standard Deviation: ', mean_val);

85 text(5,.95,s);

86

87 %Plot the covariances for the voltage sensor values

88 figure(2);

89 plot(covars(:,1), covars(:,2), '*')

90 hold on;

91 title('Covariances v. Voltage (24V Sensor)');

92 xlabel('Voltage in .5V steps (V)')

93 ylabel('Covariance Value (unitless)')

94 mean_val = num2str(unfixed_covars);

95 s = strcat('Average Covariance: ', mean_val);

96 text(5,.95,s);

97

98 %Plot the raw data

99 figure(3)
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100 plot(raw_vals(:,2), raw_vals(:,1), '*')

101 title('Raw ADC Counts v. Voltage');

102 xlabel('Voltage in .25V steps (V)')

103 ylabel('ADC Counts, 16-bit ADC fs = 200Hz')

104

105 %Remove the mean from the data

106 fixed_vals(:,1) = raw_vals(:,1); % - sen_mean;

107 fixed_vals(:,2) = raw_vals(:,2);

108

109 %Counter for fixed values...

110 counter = 0;

111

112 %Assuming the first point is okay else this code breaks...

113 for i = 2:(dim1*dim2)/2 - 1

114

115 diff1 = abs((fixed_vals(i,1) - fixed_vals(i+1,1)) / fixed_vals(i,1));

116 diff2 = abs((fixed_vals(i,1) - fixed_vals(i-1,1)) / fixed_vals(i,1));

117

118 %If the value is > 25% out of line...

119 if diff1 > .25 && diff2 > .25

120 fixed_vals(i,1) = round((fixed_vals(i-1, 1) + fixed_vals(i+1,1))/2);

121 counter = counter + 1;

122 end

123

124 end

125

126 %Plot the processed data

127 figure(5)

128 plot(fixed_vals(:,2), fixed_vals(:,1), '*')

129 title('ADC Counts v. Voltage, 24V Sensor (Outliers Removed)');

130 xlabel('Voltage in .5V steps (V)');

131 ylabel('ADC Counts, 16-bit ADC fs = 200Hz');

132 counts_val = num2str(counter);

133 %mean_val = num2str(sen_mean);

134 s = strcat('Values Removed (< 25% difference) from prior value:', counts_val);

135 s2 = 'Removed values replaced with the midpoint of the values prior and post.';

136

137 text(5,1000,s);

138 text(5,500,s2);

139

140 %Find a trend line...
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141 p = polyfit(fixed_vals(:,2), fixed_vals(:,1),1);

142

143 %Round to ints; the ADC only returns ints

144 %p = round(p)

145

146 %Fit the line...

147 yfit = polyval(p, fixed_vals(:,2));

148

149 %Rˆ2 Computation

150 yresid = fixed_vals(:,1) - yfit;

151 SSresid = sum(yresid.ˆ2);

152 SStotal = (length(fixed_vals(:,1)-1)*var(fixed_vals(:,1)));

153

154 rsq = 1 - SSresid/SStotal;

155

156 %Save the constants...

157 csvwrite('Voltage24SensorConstants.txt', p);

158

159 %Plot the fitted data

160 figure(6)

161 plot(fixed_vals(:,2), fixed_vals(:,1), '*')

162 hold on

163 plot(fixed_vals(:,2), yfit, 'r', 'LineWidth', 2)

164 title('ADC Counts v. Voltage, 24V Sensor (fitted Line and Collected Data)');

165 xlabel('Voltage in .5V steps (V)');

166 ylabel('ADC Counts, 16-bit ADC fs = 200Hz');

167 m_val = num2str(p(1));

168 b_val = num2str(p(2));

169 rsq_val = num2str(rsq);

170 s = strcat('Regression: y = ', m_val, ' * x + ', b_val);

171 s2 = strcat('rˆ2 = ', rsq_val);

172 s3 = 'Parameters rounded ints; ADC only returns ints';

173

174 %Place text onto plot

175 text(5,1650,s);

176 text(5,1100,s2);

177 text(5,650,s3);

178

179 %Statistics using the cleaner data

180

181 %Counters and variables for parsing the data
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182 j = 1;

183

184 %Measurement step sizes

185 init_val = 1;

186 max_val = 30;

187 step_size = .5;

188 val = init_val;

189

190 %min/max value for std/cov windows

191 window_size = dim1;

192 min = 1;

193 max = window_size;

194

195 while j < dim2 / 2 + 1

196 %Calculate standard deviation and covariance

197 stddevs_clean(j,1) = val;

198 stddevs_clean(j,2) = std(fixed_vals(min:max ,1));

199 covars_clean(j,1) = val;

200 covars_clean(j,2) = cov(fixed_vals(min:max ,1));

201

202 %Increment the counters

203 val = val + step_size;

204 min = min + window_size;

205 max = max + window_size;

206 j = j + 1;

207 end

208

209 %Average statistics

210 fixed_stddev = mean(stddevs_clean(:,2));

211 fixed_covars = mean(covars_clean(:,2));

212

213 %Plot the standard deviations for the Voltage sensor values

214 figure(7);

215 hold on;

216 plot(stddevs_clean(:,1), stddevs_clean(:,2), '*')

217 title('Standard Deviations v. Voltage without Extreme Outliers (24V Sensor)');

218 xlabel('Voltage in .5V steps (V)')

219 ylabel('Standard Deviation (unitless)')

220 mean_val = num2str(fixed_stddev);

221 s = strcat('Average Standard Deviation: ', mean_val);

222 text(5,.95,s);
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223

224 %Plot the covariances for the Voltage sensor values

225 figure(8);

226 plot(covars_clean(:,1), covars_clean(:,2), '*')

227 hold on;

228 title('Covariances v. Voltage without Extreme Outliers (24V Sensor)');

229 xlabel('Voltage in .5V steps (V)')

230 ylabel('Covariance Value (unitless)')

231 mean_val = num2str(fixed_covars);

232 s = strcat('Average Covariance: ', mean_val);

233 text(5,.95,s);
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C.2 Current Sensor

1 % Data Procesing for Characterization

2 % Christopher Miller

3 % Created on: 6/16/2015

4 % Modified: 10/15/2015

5

6 clc

7 close all

8 clear all

9 clc

10

11 %Read in the data file

12 filename = '2015_02_21_rawcountsLEMCurrentSensor.dat';

13 data = csvread(filename);

14

15 %Convert the file to a 2xn vector

16

17 dim1 = 250; %Number of points

18 dim2 = 242; %Number of measurements

19

20 %Sampling period/freq

21 f_s = 82;

22 T_s = 1/f_s;

23

24 %Variables to store data

25 raw_vals = zeros(dim1*dim2/2,2);

26

27 %counters

28 x = 1;

29 j = 1;

30

31 %Transform the csv file

32 while j < dim2

33 for i = 1:dim1

34 raw_vals(x,1) = data(i, j);

35 raw_vals(x,2) = data(i, j + 1);

36 x = x + 1;

37 end

38 j = j + 2;
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39 end

40

41 %Calculate std devs per measurement value

42 stddevs = zeros(dim2/2,2);

43 covars = zeros(dim2/2,2);

44

45 %Counters and variables for parsing the data

46 j = 1;

47

48 %Measurement step sizes

49 init_val = 0;

50 max_val = 30;

51 step_size = .25;

52 val = init_val;

53

54 %min/max value for std/cov windows

55 window_size = dim1;

56 min = 1;

57 max = window_size;

58

59 %Calculate sensor mean

60 sen_mean = round(mean(raw_vals(min:max,1)));

61

62 while j < dim2 / 2 + 1

63 %Calculate standard deviation and covariance

64 stddevs(j,1) = val;

65 stddevs(j,2) = std(raw_vals(min:max ,1));

66 covars(j,1) = val;

67 covars(j,2) = cov(raw_vals(min:max ,1));

68

69 %Increment the counters

70 val = val + step_size;

71 min = min + window_size;

72 max = max + window_size;

73 j = j + 1;

74 end

75

76 %Average statistics

77 unfixed_stddev = mean(stddevs(:,2));

78 unfixed_covars = mean(covars(:,2));

79
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80 %Plot the standard deviations for the current sensor values

81 figure(1);

82 hold on;

83 plot(stddevs(:,1), stddevs(:,2), '*')

84 title('Standard Deviations v. Current');

85 xlabel('Current in .25A steps (A)')

86 ylabel('Standard Deviation (unitless)')

87 mean_val = num2str(unfixed_stddev);

88 s = strcat('Average Standard Deviation: ', mean_val);

89 text(5,300,s);

90

91 %Plot the covariances for the current sensor values

92 figure(2);

93 plot(covars(:,1), covars(:,2), '*')

94 hold on;

95 title('Covariances v. Current');

96 xlabel('Current in .25A steps (A)')

97 ylabel('Covariance Value (unitless)')

98 mean_val = num2str(unfixed_covars);

99 s = strcat('Average Covariance: ', mean_val);

100 text(5,100000,s);

101

102 %Plot the raw data

103 figure(3)

104 plot(raw_vals(:,2), raw_vals(:,1), '*')

105 title('Raw ADC Counts v. Current');

106 xlabel('Current in .25A steps (A)')

107 ylabel('ADC Counts, 16-bit ADC fs = 200Hz')

108

109 %Remove the mean from the data

110 fixed_vals(:,1) = raw_vals(:,1);% - sen_mean;

111 fixed_vals(:,2) = raw_vals(:,2);

112

113 %Counter for fixed values...

114 counter = 0;

115

116 %acceptable error

117 err = .25;

118

119 %Assuming the first point is okay else this code breaks...

120 for i = 2:(dim1*dim2)/2 - 1
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121

122 diff1 = abs((fixed_vals(i,1) - fixed_vals(i+1,1)) / fixed_vals(i,1));

123 diff2 = abs((fixed_vals(i,1) - fixed_vals(i-1,1)) / fixed_vals(i,1));

124

125 %If the value is > 25% out of line...

126 if diff1 > err && diff2 > err

127 fixed_vals(i,1) = round((fixed_vals(i-1, 1) + fixed_vals(i+1,1))/2);

128 counter = counter + 1;

129 end

130

131 end

132

133 %Plot the processed data

134 figure(4)

135 plot(fixed_vals(:,2), fixed_vals(:,1), '*')

136 title('ADC Counts v. Current; LEM CKSR50NP Sensor (Serial Outliers Removed)');

137 xlabel('Current in .25A steps (A)');

138 ylabel('ADC Counts, 16-bit ADC (f_s = 80.21Hz)');

139 counts_val = num2str(counter);

140 mean_val = num2str(sen_mean);

141 s = strcat('Values Removed (< 25% difference) from prior value:', counts_val);

142 s2 = 'Removed values replaced with the midpoint of the values prior and post.';

143 s3 = strcat('Constant Mean Value: ', mean_val);

144

145 %Place info on plot

146 text(2,1.45e4,s);

147 text(2,1.44e4,s2);

148 text(2,1.43e4,s3);

149

150 %Find a trend line...

151 p = polyfit(fixed_vals(:,2), fixed_vals(:,1),1)

152

153 %Fit the line...

154 yfit = polyval(p, fixed_vals(:,2));

155

156 %Rˆ2 Computation

157 yresid = fixed_vals(:,1) - yfit;

158 SSresid = sum(yresid.ˆ2);

159 SStotal = (length(fixed_vals(:,1)-1)*var(fixed_vals(:,1)));

160

161 rsq = 1 - SSresid/SStotal;
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162

163 %Plot the fitted data

164 figure(5)

165 plot(fixed_vals(:,2), fixed_vals(:,1), '*')

166 hold on

167 plot(fixed_vals(:,2), yfit, 'r', 'LineWidth', 2)

168 title('ADC Counts v. Current for LEM CKSR 50-ND (Fitted Line)');

169 xlabel('Current in .25A steps (A)');

170 ylabel('ADC Counts, 16-bit ADC (f_s = 80.21Hz)');

171 m_val = num2str(p(1));

172 b_val = num2str(p(2));

173 rsq_val = num2str(rsq);

174 s = strcat('Regression: y = ', m_val, ' * x + ', b_val);

175 s2 = strcat('rˆ2 = ', rsq_val);

176 %s3 = 'Parameters rounded ints; ADC only returns ints';

177

178 %Place text onto plot

179 text(2,1.45e4,s);

180 text(2,1.44e4,s2);

181

182 %Statistics using the cleaner data

183

184 %Counters and variables for parsing the data

185 j = 1;

186

187 %Measurement step sizes

188 init_val = 0;

189 max_val = 30;

190 step_size = .25;

191 val = init_val;

192

193 %min/max value for std/cov windows

194 window_size = dim1;

195 min = 1;

196 max = window_size;

197

198 while j < dim2 / 2 + 1

199 %Calculate standard deviation and covariance

200 stddevs_clean(j,1) = val;

201 stddevs_clean(j,2) = std(fixed_vals(min:max ,1));

202 covars_clean(j,1) = val;
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203 covars_clean(j,2) = cov(fixed_vals(min:max ,1));

204

205 %Increment the counters

206 val = val + step_size;

207 min = min + window_size;

208 max = max + window_size;

209 j = j + 1;

210 end

211

212 %Average statistics

213 fixed_stddev = mean(stddevs_clean(:,2));

214 fixed_covars = mean(covars_clean(:,2));

215

216 %Plot the standard deviations for the current sensor values

217 figure(6);

218 hold on;

219 plot(stddevs_clean(:,1), stddevs_clean(:,2), '*')

220 title('Standard Deviations v. Current without Extreme Outliers');

221 xlabel('Current in .25A steps (A)')

222 ylabel('Standard Deviation (unitless)')

223 mean_val = num2str(fixed_stddev);

224 s = strcat('Average Standard Deviation: ', mean_val);

225 text(5,.5,s);

226

227 %Plot the covariances for the current sensor values

228 figure(7);

229 plot(covars_clean(:,1), covars_clean(:,2), '*')

230 hold on;

231 title('Covariances v. Current without Extreme Outliers');

232 xlabel('Current in .25A steps (A)')

233 ylabel('Covariance Value (unitless)')

234 mean_val = num2str(fixed_covars);

235 s = strcat('Average Covariance: ', mean_val);

236 text(5,.5,s);

237

238 %10/15/2015 - Added code to properly calculate sigma-sqed value

239

240 %Define the linear regression vars

241 alpha = p(1);

242 mu = p(2);

243
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244 %Convert the current to

245 current_hat = (fixed_vals(:,1) - mu) / alpha; %Convert from cnts to Amps

246 %'Truth', verified with a calibrated DC power supply from EE dept.

247 current = fixed_vals(:,2);

248

249 %Innovations

250 err = current - current_hat;

251

252 %Length of the vector (num pts)

253 n = size(current);

254

255 %Calc sigma squared (square of the RMS)

256 sig_sq = (1/n(1))*sum(err.ˆ2);

257

258 disp('Sig Squared for Current Sensor: ');

259 sig_sq

260

261 %Save the values as a *.csv

262 x = [p, sig_sq];

263 csvwrite('CurrentSensorConstants.txt', x);

264

265

266 %End script 10/15/2015
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C.3 Data Capture

The following includes the code used to capture and characterize the current sensor.

1 %Intelligent Vehicles and Systems Group

2 %LEM CKRS 50-NP Current Sensor Characterization data capture file

3 %Utilizes an Arduino UNO and the MATLAB serial drivers

4 %to pull current 16-bit ADC counts into MATLAB for processing and analysis

5 %Arduino Uno tied to COM4

6

7 %Script written by Christopher Miller (chris.x.miller@psu.edu)

8 %On 6/2/2015

9 %Last Edited 7/21/2015

10

11 %Current Sensor Characterization Script

12

13 %Clear and close stuff...

14 clc

15 clear all

16 close all

17 clear

18 clc

19

20 %Serial Stuff...

21 disp('Init the Serial Port');

22 %Open the serial port

23 s = serial('COM4', 'BaudRate', 57600);

24

25 %Set the timeout to 25ms

26 s.Timeout = 25;

27

28 %Make the input buffer smaller

29 %s.InputBufferSize = 8;

30

31 disp('Open the Serial Port');

32 %Open the port

33 fopen(s);

34 disp('Port Open!');

35

36 %Initialize lengths

37 max_val = 30; %Upper Bound
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38 step_size = .25; %Increment size (units) (Delta)

39 samples = 250; %Number of samples per step

40 steps_total = max_val / step_size + 1; %Total number of steps

41 %Recording counts from the ADC, not voltages

42 data_arr = zeros(samples,2,steps_total); %Data Arr

43 measure = 0; %initial value of measurement (units)

44

45 %initialize the array

46 for i = 1:steps_total

47 for j = 1:samples

48 %initalize the current value being recorded

49 data_arr(j, 2, i) = measure;

50 j = j+1;

51 end

52 i = i+1;

53 measure = measure + step_size;

54 end

55

56 %Get the samples into the data vec!

57 measure = 0;

58

59 %setup a counter...

60 j = 1;

61

62 %Prompt the user when ready to begin test...

63 r = input('Press enter when ready to begin.');

64 for i = 1:steps_total

65 %Prompt user to set input

66 disp('Set measured value to ');

67 disp(measure);

68 r = input('Return when ready to step');

69 % %Flush the input buffer then collect

70 flushinput(s);

71 % disp('Waiting...');

72 % pause(5);

73 %Formatting...

74 disp('Sampling...');

75 disp(' ');

76

77 %Sampling routine

78 while(j <= samples)
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79 %initalize the current value being recorded

80 val = str2num(fgets(s)); %data reading here..

81 %If it's empty, ignore it

82 if(isempty(val))

83 disp('Empty Val');

84 %else, save it

85 else

86 data_arr(j,1,i) = val(1);

87 %increment the ounter

88 j = j+1;

89 end

90

91 end

92 %Increment the counters...

93 measure = measure + step_size;

94 %zero out the counter

95 j = 1;

96 end

97

98 %Close the serial port, save the data...

99 disp('Test Complete.');

100 disp('Closing Serial Port...');

101 fclose(s);

102 disp('Port Closed. Saving data to .csv file...');

103 csvwrite('2015_02_21_rawcountsLEMCurrentSensor.dat', data_arr);

104 disp('CSVfile Saved.');

105 disp('Sampling Fre = 5ms');
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Appendix D
Appendix D

The following includes the code used to process the battery discharge test results to determine
the battery’s parameters. The first section presents the code needed to determine the characteristics
of the OCV-SOC curve for the wheelchair’s lead acid batteries. The second section includes the
code to fit the dynamics from the current pulse test.

D.1 OCV-SOC Parameters

1 %Intelligent Vehicles and Systems Group

2 %Penn State University

3 %Parse file to read in bag file from the current sensor, voltage sensor on

4 %on the wheelchair to generate OCVSOC Curve.

5 %Removes outliers and the stopping point(when the relay triggered)

6

7 %Script Written by Christopher Miller (chris.x.miller@psu.edu)

8 %Written on: 7/8/2015

9 %Edited on: 9/10/2015

10

11 %This file is for the second run of the OCVSOC curve using the fixed

12 %sensors, lower frequency, and higher current...

13

14 close all

15 clear all

16 clc

17
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18 % Read in power data

19 % bagfile = '2015-07-26-01-55-56-OCV_SOC_DC_Load_newbats.txt';

20 % bagfile = '2015-08-25-17-53-09-OCVSOC1A2.txt';

21 bagfile = '2015-09-01-13-38-26-OCVSOC1A3.txt';

22 power_data = csvread(bagfile);

23 power_12V = power_data(:,1); % Battery voltage, should be 12V

24 power_24V = power_data(:,2); % Battery voltage, should be 24V

25 power_current = power_data(:,3); % Battery current

26 stop_vec = power_data(:,4); %Record value (1 or 0)

27

28 %Stopping index (manual read of raw data)

29 len = 1;

30

31 while(1)

32 if(stop_vec(len) == 0 && stop_vec(len+ 5) == 0 && ...

33 stop_vec(len + 10) ==0)

34 break

35 end

36 len = len + 1;

37 end

38

39 %Stopping index (manual read of raw data)

40 %cut the last two points (they tend to be flaky)

41 len = len-2;% len - 2;

42

43 %Sampling frequency

44 f_s = 79.73; %Hz

45 T_s = 1/f_s; %s

46

47 %Shorten vectors,

48 parsed_power_24V = power_24V(1:len);

49 parsed_power_current = power_current(1:len);

50

51 %Remove mega outliers (+/- 10%) for voltage; assumes first, last points are

52 %is "okay"

53 counter_24V = 0;

54 err = .05;

55 for i = 2:len-1

56

57 diff1 = abs((parsed_power_24V(i,1) - parsed_power_24V(i+1,1)) / ...

58 parsed_power_24V(i+1,1));



86
59 diff2 = abs((parsed_power_24V(i,1) - parsed_power_24V(i-1,1)) /...

60 parsed_power_24V(i-1,1));

61

62 %If the value is > err out of line... (this is the worst error...)

63 if diff1 > err && diff2 > err

64 parsed_power_24V(i,1) = round((parsed_power_24V(i-1, 1) ...

65 + parsed_power_24V(i+1,1))/2);

66 counter_24V = counter_24V + 1;

67 end

68 end

69

70 %Remove mega outliers (+/- 25%) for voltage; assumes first, last points are

71 %is "okay"

72 counter_current = 0;

73 for i = 2:len-1

74

75 diff_1 = abs((parsed_power_current(i,1) - parsed_power_current(i+1,1)) / ...

76 parsed_power_current(i,1));

77 diff_2 = abs((parsed_power_current(i,1) - parsed_power_current(i-1,1)) /...

78 parsed_power_current(i,1));

79

80 %If the value is > 25% out of line...

81 if diff_1 > err && diff_2 > err

82 parsed_power_current(i,1) = round((parsed_power_current(i-1, 1) +...

83 parsed_power_current(i+1,1))/2);

84 counter_current = counter_current + 1;

85 end

86 end

87

88 %Convert to voltage, current

89 voltage = (parsed_power_24V - 139)/425;

90 current = (parsed_power_current - (13300.4779))/66.8083;

91

92 %Charge for SOC

93 coluombs = zeros(len,1);

94 coluombs_const = zeros(len,1);

95 cur = mean(current); %Amps, constant current

96 dT = T_s; %1/f_s or T_s

97

98 %Initial conditions

99 coluombs_const(1) = cur*dT; %current(1)*dT;
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100 coluombs(1) = current(1)*dT;

101

102 for(i = 2:len)

103 coluombs_const(i) = coluombs_const(i-1) + cur*dT;

104 coluombs(i) = coluombs(i-1) + current(i)*dT;

105 end

106

107 %Gen SOC Vecs

108 for(i = 1:len)

109 SOC(i) = coluombs(i)/coluombs(end);

110 SOC_const(i) = coluombs_const(i)/coluombs_const(end);

111 end

112 %Remove internal resistance voltage....

113 r_int = 0.055;

114

115 %Compensate for internal resistance values

116 for i = 1:len

117 volts_const_cur(i) = voltage(i) + r_int*cur;

118 volts_dyn_cur(i) = voltage(i) + r_int*current(i);

119 end

120

121 %Generate time vec

122 for i = 1:len

123 time(i) = (i*T_s)/3600;

124 end

125

126 %PLOTS PLOTS PLOTS EVRYBODY

127 figure(1)

128 %Plot the curve vs charge

129 plot(coluombs(1:end), volts_dyn_cur(1:end));

130 title('OCVSOC Curve for Inverted DC Power Supply Load,...

131 R_i_n_t Added, Wheelchairs 16-bit ADC, Third Discharge');

132 xlabel('Charge (C)');

133 ylabel('Voltage (V)');

134 axis([0 1.16e5 23 27.8])

135

136 figure(3)

137 plot(SOC, fliplr(volts_dyn_cur))

138 hold on

139 plot(SOC_const, fliplr(volts_const_cur), 'r')

140 title('OCVSOC Curve for Inverted DC Power Supply Load Test Three');
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141 xlabel('SOC');

142 ylabel('Voltage (V)');

143 axis([-.01 1.02 23 27.8])

144 legend('Measured Coulomb Count', 'Theoretical Coulomb Count')

145

146 disp('Coluombs Count:')

147 coluombs(end)

148 disp('Const and integrated difference:')

149 coluomb_count_diff = coluombs(end) - coluombs_const(end)

150 disp('Percent Error: ' );

151 err = (coluomb_count_diff/coluombs(end))*100

152

153 %Plot linear region of curve

154 figure(4)

155 volts_linear = fliplr(volts_dyn_cur(round(.2*len):.8*len));

156 coluombs_linear = SOC(round(.2*len):.8*len)';

157 plot(coluombs_linear,volts_linear)

158 hold on

159

160 %region 2 regrssion and plotting...

161 p = polyfit(coluombs_linear, volts_linear', 1);

162 yfit = p(1)*coluombs_linear + p(2);

163 plot(coluombs_linear, yfit, 'r')

164 title('Linear Region of OCVSOC Curve for OCVSOC Test Three')

165 xlabel('SOC');

166 ylabel('Voltage (V)');

167 legend('Actual','Fit');

168 axis([.19 .81 23 27.8])

169

170 %Calculate rˆ2

171 yresid = volts_linear - yfit';

172 SSresid = sum(yresid.ˆ2);

173 SStotal = (length(volts_linear)-1) *var(volts_linear);

174 rsq = 1 - SSresid/SStotal;

175 disp('rˆ2 for the fit is...');

176 rsq

177 disp('Coeffs of the curve fit...');

178 p

179

180 disp('Average Current:');

181 mean(current)
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D.2 Dynamic Parameters

D.2.1 Runner File

1 %Intelligent Vehicles and Systems Group

2 %Penn State University

3 %Parse file to read voltage and current data recorded on the wheelchair

4 %Parses the data and finds a model fit.

5

6 %This file assumes the data read in occurs after the first 20% of the

7 %batteries have been discharged to place the system into the linear region

8 %of the OCV-SOC curve. This code will not work if this has not been

9 %completed.

10

11 %Script Written by Christopher Miller (chris.x.miller@psu.edu)

12 %Written on: 9/10/2015

13 %Edited on: 9/20/2015

14

15 close all

16 clear all

17 clc

18

19 % Read in power data

20 bagfile = 'ModelFitData.txt'; % Date and time stamp of desired bag file

21 power_data = csvread(bagfile);

22 time = power_data(:,1); % Read in the time vector, convert to seconds

23 voltage = power_data(:,2); % Battery voltage, should be 24V

24 current = power_data(:,3); % Battery current

25

26 %Time_init_Adjust

27 init_time = time(1);

28 time = time - init_time;

29

30 %length of data vectors

31 len = length(time);

32

33 %Read in other constants

34 misc_constants = csvread('miscvals.txt');

35

36 %Total Charge



90
37 Q_0 = misc_constants(1); %C

38

39 %Internal Resistance

40 R_int = 0.16;% misc_constants(2); %Ohms

41

42 %Sampling frequency

43 f_s = misc_constants(3); %Hz

44 dT = 1/f_s; %s

45

46 %Read in the SOC Information

47 OCVSOC_info = csvread('OCVSOCConstants.txt');

48

49 %Define alpha, SOC to OCV

50 alpha = OCVSOC_info(1);

51 %Define constant mean, mu

52 mu = OCVSOC_info(2);

53

54 %Time to fit the model....

55

56 %Since 20% has been discharged, SOC_0 is .8

57 SOC_0 = .8;

58 SOC = zeros(len,1);

59 SOC(1) = SOC_0;

60

61 %Generate a SOC vector...

62 for(i = 2:len)

63 %Depleating SOC with time...

64 SOC(i) = SOC(i-1) - ((current(i)*dT)/Q_0);

65 %the SOC prior will be greater than the present SOC. It will decrease

66 %by the % of charge lost. % charge = charge used in timestep/total

67 %charge. Charge used in timestep = sampled current * dT (timestep)

68 end

69

70 %Initial guess for the two terms

71 init_guess = [.5 1.2e5 alpha mu .156];

72 % [ -1/tau 1/C alpha, mu, R_int]

73

74 Q_0_dt = 8.8266e+06;

75

76 %FIT THE MODEL

77
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78 opts = optimoptions(@lsqnonlin, 'MaxFunEvals', 10000);

79 vars = lsqnonlin(@(m) batteryFit_est_alpha_mu_R_int(m, voltage, current,....

80 SOC, Q_0_dt,dT), init_guess);

81

82 %Plot model vs measurement

83

84 %Run the simulation

85 volt_compare = batterySim(vars, current, SOC, Q_0_dt, dT);

86

87 %plot the model

88 figure(1)

89 plot(time, volt_compare)

90 hold on

91 plot(time, voltage)

92

93 title('Model Battery Voltage vs. Measurement Battery Voltage');

94 xlabel('Time (s)');

95 ylabel('Voltage (V)');

96 legend('Prediction', 'Measurement');

97

98 %Calculate error

99 err = 100*((voltage - volt_compare)./voltage);

100 %new figure, yo

101 figure(2)

102 plot(time, err);

103

104 title('Model Battery Voltage Error');

105 xlabel('Time (s)');

106 ylabel('% Error');

107

108 mean(err)

109

110 csvwrite('2ndOrderParams.txt', vars);
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D.2.2 Fitting Function

1 function [ dy ] = batteryFit_est_alpha_mu_R_int( vec, voltage, current, SOC, Q_0, dT)

2 %UNTITLED4 Function to read in battery data and guesstimate the params

3 % Detailed explanation goes here

4 %Vec(1) = tau

5 %Vec(2) = C

6 %Vec(3) = alpha

7 %Vec(4) = mu

8

9 %Calculate the discrete time SOC from the current vector

10 xpart = .80 - (1/Q_0) * cumsum(current)*dT;

11

12 %Calculate the Open Circuit Voltage

13 V_ocv = SOC*vec(3) + vec(4);

14

15 %Calculate the direct response (zero state response)

16 V_dir = current*vec(5);

17

18 %Exponential for convolution

19 exparr = exp(-(dT/(vec(1))*(1:length(current))'));

20

21 %Transient response (due to current...) (Zero input response)

22 V_c = ((1/vec(2))*dT*fconv(current, exparr));

23

24 %Cut the extra values from the convolution function...

25 V_c = V_c(1:numel(current));

26

27 %Voltage guess (this is from the circuit diagram ... Subtract

28 y = V_ocv - V_dir - V_c;

29 %

30 %Calculate the difference between 'truth' and 'guess'

31 dy = (voltage - y);

32 %Subtrace the constant offset from the voltage, then find the error

33 %between "truth" and the estimate.

34 end
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Appendix E
Appendix E

The following includes the code used to simulate the battery pack state estimator in MATLAB.

1 %Intelligent Vehicles and Systems Group

2 %Penn State University

3 %Reads in real data, simulates the SOC estimator to be implemented on the

4 %wheelchair

5

6 %Script Written by Christopher Miller (chris.x.miller@psu.edu)

7 %Written on: 02/27/2016

8 %Edited on: 02/27/2016

9

10 %Clear the space

11 close all

12 clear all

13 clc

14

15 %Read in the data

16 data = csvread('2016-02-25-12-15-09.txt');

17 %data = csvread('2015-11-12-17-11-31-QMatrixData.txt');

18

19 %Parse the data

20 volts_cnts = data(:,2);

21 current_cnts = data(:,3);

22

23 %Length variable

24 len = length(volts_cnts);

25
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26 %Read in constants for conversion

27 volt_sens = csvread('Voltage24SensorConstants.txt');

28 cur_sens = csvread('CurrentSensorConstants.txt');

29

30 %Convert from counts to...

31 current_uf = (current_cnts - 13318)/cur_sens(1); %[A]

32 voltage_uf = (volts_cnts - volt_sens(2))/volt_sens(1); %[V]

33

34 %Filter out the BS from

35 for i = 1:len

36 if voltage_uf(i) < 0

37 voltage_uf(i) = voltage_uf(i-1);

38 end

39

40 if current_uf(i) < 0

41 current_uf(i) = current_uf(i-1);

42 end

43 end

44

45 current = current_uf;%step(LP_FIR, current_uf);

46 voltage = voltage_uf;%step(LP_FIR, voltage_uf);

47

48 %Read in Discrete-type state matricies

49 Ad = csvread('A_d.txt');

50 Bd = csvread('B_d.txt');

51 Cd = csvread('C_d.txt');

52 Dd = csvread('D_d.txt');

53

54 %System Params

55 params = csvread('2ndOrderParams.txt');

56 misc = csvread('miscvals.txt');

57 f_s = misc(3);%Hz

58 dT = 1/f_s;%s

59 SOC_0 = 1.00;% 80% SOC for linear region

60 V_ct_0 = 0.05; %Assume 0.05V for the capactitive voltage. Seems right

61 mu = params(4);%DC offset in the battery

62 Q_0 = misc(1); %Total battery charge

63

64 %Noise Params

65 current_vars = csvread('CurrentSensorConstants.txt')';

66 cur_sens_sig_sq = current_vars(3); %R matrix stuff
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67

68 %State vector and initial states

69 x_hat = zeros(2, len);

70 x_hat(1,1) = V_ct_0; %V

71 x_hat(2,1) = SOC_0; %*ones(1,len); %

72

73 %Define sensor noise

74 s_noise = 5.23653;

75

76 %Q matrix, by defn

77 sig_Vct = 0.3356*10;

78 sig_SOC = 0.011/10;

79

80 Q = [sig_Vct 0; 0 sig_SOC];

81

82 %Define the R matrix

83 R = s_noise;

84

85 %Initalize the matrix

86 P = zeros(2,2,len);

87 P(:,:,1) = eye(2,2); %eye(2)*.001;

88

89 % Preallocate marices

90 K = zeros(2,len);

91 sqrtP = zeros(1,len);

92 inov = zeros(1,len);

93 y_hat = zeros(1,len);

94 volt_est_hat = zeros(1,len);

95 vct_covar = zeros(1,len);

96 soc_covar = vct_covar;

97

98 %Initalize the Coulomb Counter

99 cmbcnt = zeros(1,len);

100 cmbcnt(1) = 1;

101

102 %Turn on the switches

103 sw_1 = 3;

104 sw_2 = 1;

105

106 %Run the estimator

107 for k = 2:len
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108 if x_hat(2,k-1) >=.9 && sw_1 == 3

109 sw_1 = 1;

110 elseif x_hat(2,k-1) < .9 && x_hat(2,k-1) > .1 && sw_1 == 1

111 sw_1 = 0;

112 elseif x_hat(2,k-1) < .1 && sw_1 == 0

113 sw_1 = 1;

114 end

115

116 if sw_1 == 1

117 %This simulates the coloumb counter

118 x_hat(2,k) = x_hat(2,k-1) - inv(Q_0)*cumsum(current(k))*dT;

119 sw_1 = 1;

120

121 elseif sw_1 == 0

122 %Do Once

123 if sw_2 == 1

124 %Set the initial y_hat

125 y_hat(k) = voltage(k);

126 %Initial P matrix

127 P(:,:,k-1) = Q;

128 %Initial V_ct state

129 x_hat(1,k-1) = 0.15;

130 %Open the switch

131 sw_2 = 0;

132 end

133

134 %Time Update measurement

135 x_hat(:,k) = Ad*x_hat(:,k-1) + Bd*current(k-1);

136 P(:,:,k) = Ad*P(:,:,k-1)*Ad' + Q;

137

138 %Measurement update the system

139 %Innovations

140 inov(k) = (voltage(k) - mu) - (Cd*x_hat(:,k) + current(k)*Dd);

141 K(:,k) = P(:,:,k)*Cd'*inv(Cd*P(:,:,k)*Cd' + R);

142 x_hat(:,k) = x_hat(:,k) + K(:,k)*(inov(k));

143 P(:,:,k) = (eye(2) - K(:,k)*Cd)*P(:,:,k);

144

145 %For plotting

146 y_hat(k) = Cd*x_hat(:,k) + Dd*current(k);

147 volt_est_hat(k) = y_hat(k) + mu;

148



97
149 %Sqrt of trace of P

150 sqrtP(k) = sqrt(trace(P(:,:,k)));

151

152 %Save covariances

153 vct_covar(k) = P(1,1,k);

154 soc_covar(k) = P(2,2,k);

155 end

156

157 %Use pure Coloumb counting for comparison

158 cmbcnt(k) = cmbcnt(k-1) - inv(Q_0)*cumsum(current(k))*dT;

159

160 end

161

162 figure(1)

163 plot(x_hat(2,:))

164 title ('SOC');

165

166 figure(2)

167 plot(x_hat(1,:))

168 title ('V_C_T');

169

170 figure(3);

171 plot(voltage);

172 hold on

173 plot(volt_est_hat, 'r');

174 title('Voltage vs Est. Voltage');

175 legend('Measurement', 'Estimate');

176

177 figure(4)

178 plot(vct_covar);

179 hold on

180 plot(soc_covar, 'r');

181 title('State Covariances');

182 legend('VCT Covar', 'SOC Covar');
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