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ABSTRACT

Wheelchair tire slip is a dangerous scenario that can result from powered wheelchair operation on icy or

low-friction surfaces. This research applies instantaneous centers of rotation (ICR) estimation to a wheelchair

application where ICR values should rarely change. Changes in these estimates are used to understand the oc-

currence of slip and to predict motion during that slip. Using inputs of position and orientation obtained through

laser odometry, an Extended Kalman Filter (EKF) algorithm is implemented to estimate the changes in wheelchair

ICR location estimates that are indicative of slippage. The algorithm is verified via simulation and experimentation

using a robotic wheelchair. It is observed that the convergence of the ICR EKF is heavily dependent on the motion

history of the wheelchair. Experiments show that ICR locations do not vary significantly under the slip-free con-

ditions of normal operation with 2-σ standard deviations of 0.076 m, but the ICR locations deviate up to 0.84 m

during slippage.

1 Introduction

A wheelchair user makes her way down an icy sidewalk in winter in a small town in the northeastern United States. One

of her wheels catches an ice patch and, for a terrifying instant, she loses control of her wheelchair. While this scenario may

not be able to be completely avoided, the motion of wheelchair tires on slippery surfaces can be predicted, enabling warning

systems and safe operational modes that can enhance the safety of wheelchair users. As described by Wang, et al., the loss

of control and injury among electric wheelchair users is far too prevalent [1–3]. With over three million wheelchair users in
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the United States, and that number growing, it is increasingly necessary to design and evaluate safety features for electric

wheelchair operation [4].

Wheelchair users already face limited mobility. However, wintry and rainy conditions present further mobility con-

straints [5–7]. Of the 100,000 wheelchair-related accidents reported in 2003, 65 to 80% were attributed to tips and falls,

many of which were likely due to slippery or uneven terrain [1, 8]. This increased limitation is particularly worrisome be-

cause lack of mobility also contributes to social isolation and psychosocial problems [7]. Unfortunately, little research is

devoted to improving the control of wheelchair motion on low-friction surfaces [1, 7, 9].

1.1 Prior Work Detecting Ground Robot Wheel Slip

While encoders can be used to compare the drive wheel speeds to the caster wheel speeds in order to estimate wheel slip

for many vehicles, standard electric wheelchairs are limited because they do not typically come equipped with encoders and,

therefore, lack the redundant encoder systems required to repeat this estimation [1, 10]. However, most electric wheelchairs

being used for research purposes are modified to have encoders and, consequently, are enabled to have odometry measure-

ments and slip detection. For example, Wang, et al., expanded upon the limited control technologies available to electric

wheelchairs by installing caster wheel encoders to evaluate the effects of three control algorithms on wheelchair driving

speed variation and wheel slip: model-based control, proportional-integral-derivative (PID) control, and open-loop control.

Wheel slip was detected by comparing the wheelchair velocity obtained from a caster-wheel encoder with the wheelchair

wheel velocities obtained from the drive wheel encoders. Of the three control algorithms tested, experimental results deter-

mined that the model-based control platform yielded the best results. With model-based control, the slip coefficient could be

made to be similar at different driving speeds because the algorithm decreased the driving wheel speed when slip exceeded

a predefined threshold to increase traction. The researchers suggest that a rapid method for detecting changes in terrain may

be helpful for setting terrain-specific slip coefficient control thresholds.

A study by Lemaire, et al., evaluated wheelchair navigation strategies for ramp ascent and descent for winter weather

conditions [7]. Their experimental conditions included several ramp grades with: (i) packed snow and (ii) packed snow

with a freezing rain cover and traction grit. While the study focused on manual wheelchair users, it was confirmed that

further research on mobility in winter is necessary. In particular, it was observed that independence cannot be assumed for

all conditions using standard propulsion techniques alone.

Mobile robot slip estimation is a well-studied area of research. A standard technique is to compare movement inputs

with measured motion. This approach can be accomplished using wheel encoder odometry, visual odometry, inertial mea-

surement units (IMUs), laser rangefinder sensors, and/or high fidelity position systems, including global positioning systems

(GPS). Previous research in the field of robotics has addressed slip detection using exteroceptive or absolute sensors either

individually or in combination [11–13]. Visual odometry and IMU measurements can be fused through a Kalman Filter pose

estimator for slippage detection, and this approach was demonstrated on a Mars rover in the work of Helmick, et al. [11].

The merged estimate was compared to full vehicle kinematic algorithm estimates to determine if and how much slippage

occurred. Similarly, Olsen, et al., combined visual odometry with absolute heading measurements for long-range robot
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navigation [12]. This technique combined feature selection and tracking with orientation sensor measurements to reduce the

accumulation of odometry error over long distances.

Longitudinal wheel slip and immobilized conditions can also be estimated from measurements derived from wheel

encoders, IMU, and GPS. Ward, et al. integrated this approach with an Extended Kalman Filter (EKF) for a tire traction and

braking model to calculate vehicle dynamic forces [14, 15]. Their work demonstrated accurate immobilization detection in

the absence of GPS and suggested possible applications in both terrestrial and space robotics.

Reina, et al., proposed another approach to detect slippage that relies purely on proprioceptive sensors [13]. Readings

from encoders, a gyroscope, and current sensors were compared for wheel slippage identification on sandy nonflat terrain,

for which 61 to 94% of vehicle slippage occurrences were detected. This work also incorporated a visual sinkage estimation

algorithm that used a camera to view the wheel-terrain interface. Reina, et al. determined the contact angle by attaching a

pattern of equally spaced concentric black circumferences on a white background to the wheel. This technique resulted in

maximum errors below 15%. While the methods employed by Reina, et al., did not require a priori information about the

environment, they were limited to detecting slippage along the longitudinal direction of motion.

Vision-based algorithms have been used with increasing regularity to detect slip via stereo or monocular vision odom-

etry [16–18]. Milella, et al., implemented two methods for rough terrain mobile robots using visual inputs [16]. The first

method employed a stereovision algorithm for real-time six degree-of-freedom ego-motion estimation, while the second

method estimated wheel sinkage of a mobile robot on sandy soil based on edge detection. Nister, et al., presented a system

that determines the motion of a stereo head for which no prior knowledge of the scene or the motion is necessary [17].

The method was successfully applied to video from aerial, automotive, and handheld platforms. Preliminary work by Song,

et al., integrated a Kalman Filter optical flow method to measure the velocity of mobile robots using a downward-looking

camera [18]. This technique was used to track salient natural features on terrain surfaces and provide estimates of vehicle

pose and velocity. Estimates from the optical flow algorithm and wheel angular velocities obtained from wheel encoders

were then implemented with a sliding mode observer and EKF to estimate longitudinal slip values and slip angle [19].

For many applications, including indoor wheelchair applications, GPS measurements, inertial navigational systems

(INS), and other absolute positioning is unavailable. To account for the lack of absolute position measurements, Rogers-

Marcovitz, et al., combined Integrated Perturbative Dynamics (IPD) and an EKF to identify systematic and stochastic models

of wheel slip [20]. The EKF algorithm implemented in the research of Rogers-Marcovitz, et al., was tested on a tracked

vehicle, the Foster-Miller TALON, which relies on slippage for turning maneuvers.

1.2 Prior Work Using ICRs for Ground Robotics

The prior work of Pentzer, et al., focused on motion prediction for skid-steer mobile robots using the track instantaneous

center of rotation (ICR) locations [21, 22]. The ICR of a rigid body in planar motion is the location at which the relative

velocity of the body to the ICR point is zero at a particular instant of time [23]. At that instant, all other points on the rigid

body exhibit pure rotation about the ICR. While both differential-drive and skid-steer vehicles produce rotational motion by

adjusting right and left tire or track speeds, skid-steer vehicles rely solely on track or wheel slippage for turning maneuvers.
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Consequently, it was determined that ICR kinematics can provide accurate open-loop motion estimates for both differential

drive and skid-steer vehicles when they are operated at low speeds on flat, hard terrain [21,22,24]. The further implementation

of an EKF enabled the ICR locations to be accurately estimated. The EKF also provided a mapping from the vehicle wheel

or track speeds to the vehicle’s forward and angular velocity. This technique allows odometry accuracy to be improved even

in the absence of GPS measurements, which can ultimately enhance model-based motion prediction for skid-steer robots.

The algorithm was particularly innovative in that it can take inputs of orientation or angular rate from a variety of sensors,

including GPS, IMU, laser rangefinder, or camera-based measurements to predict accurate ICR locations.

Minimal work has been completed that identifies instances when a wheelchair undergoes slip. This research expands

upon the implementation of the algorithm used by Pentzer, et al., and Wolkowicz, et al., to better predict the motion of

wheelchairs on icy or low-friction surfaces, often representative of dangerous conditions [21, 22, 25]. In addition, this prior

work suggests methods to improve the control of wheelchair motion on slippery surfaces, the ultimate goal of which would

enable warning systems and safe operation modes to enhance the safety of wheelchair users.

1.3 ICR EKF Approach for Detecting Wheelchair Slip

The key contribution of this paper is the application of ICR estimation to situations where ICR locations should not

change, which is not how they have typically been considered in prior work. Additionally, this work uses these estimates

to predict wheelchair motion during slippage. In the work of Pentzer, et al., the application is for bomb-disposal robots

whose normal driving environments are almost solely slip-inducing (i.e. skid-steer robots operating on hills, sand, etc.).

Wheelchair driving conditions are far more constrained to where slip estimation can be a diagnostic tool. This emphasis on

ICR measurement for diagnostics, i.e., assuming a wheelchair should never experience slip, has not been presented in the

literature. However, in the instances that a wheelchair does experience slip, this paper contributes an implementation of a

practical real-time algorithm that detects wheelchair tire slip while it occurs, utilizes changes in these estimates to understand

the occurrence of slip, and presents a model-based framework to predict motion during that slip. The method employed

detects lateral and longitudinal slippage. An EKF-based approach is incorporated for which position and orientation are

obtained through laser odometry via measurements from a LiDAR laser rangefinder. The current work focuses on a two-

wheeled robotic wheelchair system and aims to combine odometry, velocity, and heading measurements to estimate when

slippage occurs. While the use of these measurements for slip has previously been applied to skid-steer robotics, it is the

implementation of the presented method for nominally slip-free wheelchair-based applications that makes this work novel.

A block diagram representing the flow of the system architecture is illustrated in Fig. 1. The user supplies motion

commands via a joystick to the wheelchair system to obtain the desired position, orientation, and individual wheel velocities.

The wheelchair system’s measured states are sensed via odometry. More accurate measurements of the wheelchair’s position

and yawrate are also obtained via LiDAR laser odometry. The individual wheel velocities and laser odometry position and

orientation measurements are then used as inputs into the ICR EKF. The outputs of the EKF are the wheelchair ICR location

estimates that are indicative of slippage, as well as updated measurements of wheelchair position and orientation.

The purpose of this work is to detect wheelchair tire slip in real-time using an ICR EKF-based approach in order
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Figure 1: Block diagram representing the signal flow of the system architecture.

to enhance the safety of electric wheelchair operation. The following topics are discussed in subsequent sections: ICR

kinematic equations (Section 2); EKF applied to estimate ICR locations (Section 3); verification of algorithm by simulation

(Section 4); design of the robotic wheelchair platform used during experimentation (Section 5); results and discussion of

experimentation (Section 6 and Section 7); summary of this work and its contributions (Section 8).

2 ICR Kinematics

When applying the kinematic equations to a mobile robot system, several key assumptions are typically made: 1) the

robot is traversing flat terrain, 2) there is no tire deformation, and 3) no slipping occurs at the contact point between the drive

wheels and the ground surface [26]. While these assumptions may greatly simplify most kinematic analyses, the assumptions

also introduce error when applied to scenarios representative of real-world operating conditions, including wintry and rainy

weather conditions.

This section introduces the ICR kinematic equations presented in [21,22,24,27]. The kinematic equations are applied to

a robotic wheelchair system and used to enhance the wheelchair’s predicted motion when the typical kinematic assumptions

fail. First, the lateral and longitudinal ICR locations for the wheelchair’s right wheel, left wheel, and chassis are presented

in terms of the right and left wheel velocities. Subsequently, the calculations for the wheelchair’s longitudinal, lateral, and

angular velocities are defined. For a two-wheeled robot such as a wheelchair, the true ICR locations should lie directly

beneath the drive wheels.

The ICR locations relative to the wheelchair with positive X in the forward direction, positive Y to the right, and positive

Z down, are illustrated in Fig. 2 (a). The lateral ICR location between wheelchair body and the ground, yICRv, is given by:

yICRv =
vx

ωz
, (1)
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Figure 2: (a) ICR locations for the robotic wheelchair when undergoing slippage. (b) North-east-down coordinate frame
with a positive clockwise heading angle.

where vx and ωz are the center of gravity longitudinal and angular velocities of the wheelchair, respectively. The lateral ICR

locations between the right and left tires and the ground, yICRl and yICRr, respectively, are:

yICRl =−
V l

x − vx

ωz
(2)

yICRr =−
V r

x − vx

ωz
, (3)

where V l
x and V r

x are the velocities of the left and right tires relative to the body of the wheelchair, respectively. The

longitudinal ICR location between the tires and the ground, xICRv, is given by:

xICRv =−
vy

ωz
, (4)

where vy is the lateral velocity of the wheelchair. The longitudinal ICR locations between the left and right tires and the

ground, xICRl and xICRr, can be computed similarly to Eqn. (2) and Eqn. (3), i.e.,

xICRl =
V l

y − vy

ωz
(5)

xICRr =
V r

y − vy

ωz
. (6)

However, since the wheelchair tires are nonholomonically constrained, the velocity in the Y direction is assumed to be zero,

simplifying Eqn. (5) and Eqn. (6) to:
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xICRr = xICRl = xICRv =−
vy

ωz
. (7)

Equations (2)-(4) can then be solved simultaneously for the wheelchair’s longitudinal, lateral, and angular velocities, vx,

vy, and ωz, respectively, as a function of left and right wheel speeds, V l and V r.

vx =
V r

x yICRl−V l
x yICRr

yICRl− yICRr
(8)

vy =
(V l

x −V r
x )xICRv

yICRl− yICRr
(9)

wz =−
V l

x −V r
x

yICRl− yICRr
(10)

The EKF discussed in Section 3 is founded upon Eqns. (8)-(10) in order to predict the ICR locations.

3 EKF Estimation of ICR Locations

The EKF presented in this section has been derived in [22] to identify the ICR locations of tracked and wheeled skid-

steer vehicles using inputs of track and wheel speeds as well as vehicle position and heading. For this work, the EKF

algorithm incorporates input measurements of wheelchair position and orientation. A fixed north-east-down (NED) frame

with a positive clockwise heading angle ψ is used, an illustration of the coordinate frame can be seen in Fig. 2 (b).

The wheelchair longitudinal and lateral velocities are presented in Eqns. (8)-(10). Using these velocities, the wheelchair

velocities components in the north and east directions, Ṅ and Ė, respectively, can be defined as:

Ṅ = vx cos(ψ)− vy sin(ψ) (11)

Ė = vx sin(ψ)+ vy cos(ψ). (12)

Augmenting Eqns. (10), (11), and (12) and assuming that the ICR locations remain constant results in the following

continuous-time kinematic motion model:

Ṅ

Ė

ωz

ẏICRr

ẏICRl

ẋICRv


=



vx cos(ψ)− vy sin(ψ)+wN

vx sin(ψ)+ vy cos(ψ)+wE

− V l
x−V r

x
yICRl−yICRr

+wω

wr

wl

wx


. (13)
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Discretizing Eqn. (13) we obtain the discrete-time kinematic motion model:



Nk

Ek

ψk

yICRrk

yICRlk

xICRvk


=



Nk−1 +∆tVNk−1 +∆twN

Ek−1 +∆tVEk−1 +∆twE

ψk−1 +∆tωzk−1 +∆twω

yICRrk−1 +∆twr

yICRlk−1 +∆twl

xICRvk−1 +∆twx


, (14)

where ∆t is the time step and ωE , ωN , ωω, ωr, ωl , and ωx are additive zero-mean Gaussian process noises. It has been

previously shown that the ICR locations for vehicles traveling at low speeds on hard, flat terrain, which is the most common

case for wheelchairs, remain within a small bounded region [22, 24]. Consequently, the ICR locations can be modeled as

constants disturbed by random noise.

Once the discrete-time kinematic motion model has been defined, the EKF prediction step can be carried out using the

standard EKF equations shown in (15) and (16):

x−k = f(x+k−1,uk−1,0) (15)

P−k = Fk−1P+
k−1FT

k−1 +Lk−1QLT
k−1, (16)

where x−k represents the propagated state at the current time step, x+k−1 is the propagated and updated state from the previous

time step, and uk−1 is the input vector of wheelchair position, orientation, and individual wheel velocities. The third term

in Eqn. (15) conveys the assumed zero process noise associated with the prediction step. The state covariance matrix, P, is

propagated using the Jacobian matrices Fk−1 and Lk−1, as well as the process noise covariance of the motion model, Q,

Fk−1 =
∂fk−1

∂x
|x+k−1

(17)

Lk−1 =
∂fk−1

∂w
|x+k−1

= ∆tI6×6. (18)

The state measurement is updated via measurements of the wheelchair’s position and orientation, N, E, and ψ, respec-

tively, the collection of which will be discussed in Section 5. These measurements are concatenated into the measurement

vector y.

yk =


Nk

Ek

ψk

 (19)

The direct measurements of the states yield the measurement equations in Eqn. (20):
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hk =


N + vN

E + vE

ψ+ vψ

 , (20)

where vN , vE , and vψ represent additive measurement noise.

Finally, with the Jacobians of the state model and prediction computed and the updates to the state estimate calculated,

the correction step to the state estimate and covariance can be performed using the standard EKF equations, shown in 21, 22,

and 23:

Kk = P−k HT
k (HkP−k HT

k +MkRkMT
k )
−1 (21)

x+k = x−k +Kk[yk−hk(x−k ,0)] (22)

P+
k = (I6×6−KkH)P−k . (23)

Here Hk and Mk are Jacobian matrices for the measurement model and are given in Eqn. (24) and Eqn. (25), R is the

measurement noise covariance of the measurement model, and yk is the actual obtained measurements.

Hk =
∂hk

∂x
|x−k =


1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

 (24)

Mk =
∂hk

∂v
|x+k = ∆tI3×3 (25)

4 Simulation

To quantify how the ICR EKF algorithm performs under controlled conditions, the wheelchair’s motion is implemented

in simulation via the kinematic motion model presented in Eqn. (14). The ICRs were initialized at their true locations

directly beneath the wheelchair’s wheels, such that yICRr = 0.245 m, yICRl = −0.245 m, and yICRr = 0.0. The path of the

simulated wheelchair, shown in Fig. 3 (a), incorporates straight-line motion and 90-degree turns in order to observe the ICR

locations for both slip and non-slip conditions. The path is varied by adding zero-mean Gaussian noise to the left and right

wheel velocity inputs, as well as by the measurement and process noise parameters. These additional noise parameters were

obtained through experimental tuning. Supplementary bias was also added to the right or left wheel velocity inputs at various

time periods to simulate tire slip. The simulation was initialized such that the locations at which the wheelchair experienced

slip could be adjusted.

The results of the simulation are presented in Fig. 3. These results verify that the ICR locations do not vary significantly

under simulated non-slip surfaces. However, the ICR locations do change significantly in simulated slip scenarios. This

effect can be seen in Fig. 3 (c). In simulation, the maximum ICR errors are 0.30 m, 0.25 m, and 0.48 m for yICRr, yICRl ,

and xICRv, respectively. Via slip prediction, the EKF can more accurately predict the simulated wheelchair’s position and

orientation than two-wheeled robot kinematics alone (simulated odometry), as shown in Fig. 3 (a)-(b). A 1-σ RMS error of
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Figure 3: Results of simulation with low-friction surfaces shown in grey: (a) Comparison of the simulated wheelchair’s true
position, two-wheeled robot model position, and the EKF estimated position; (b) Comparison of the simulated wheelchair’s
true orientation, two-wheeled robot model orientation, and the EKF estimated orientation; (c) Comparison of the simulated
wheelchair’s true ICR locations and the ICR EKF location estimates.

1.18E-06 degrees was observed between the simulated wheelchair’s true heading and the EKF’s predicted heading, while

a 1-σ root-mean-squared (RMS) error of 11.03 degrees was observed between the simulated wheelchair’s true heading and

the estimated heading of the two-wheeled robot. In addition, 1-σ RMS errors of only 1.25E-06 m in the North direction

and 5.61E-07 m in the East direction were observed between the true wheelchair position and that of the EKF’s estimated

position, depicted in Fig. 3 (a). However, when comparing the true position to the two-wheeled robot kinematics under high

angular rate and slip conditions, a 1-σ RMS error of 7.14 m with a maximum error of 17.30 m in the North direction and a

1-σ RMS error of 2.42 m with a maximum error of 5.43 m in the East direction occurred.

It should be noted that the convergence time of the filter is highly dependent on the motion of the wheelchair. If the

wheelchair is driven perfectly straight, the ICR estimates will not be updated. Rather, the ICR locations are learned while the

angular rate is nonzero, which occurs when the wheelchair turns. The convergence time is also dependent upon the initialized

ICR locations. For the remainder of this work, the convergence time is defined as the time it takes the ICR values to stay

within five percent of their steady-state values. The ICR values are measured as a percentage of the total distance from the

initial to the steady-state value. If the ICR values are initialized at their true locations, they will converge quickly, as in the

case of the simulation, in which they converged almost immediately to their true values.

5 Experimental Implementation

A real-time implementation of the algorithm is useful to confirm the repeatability of the technique in the real-world,

especially given that the assumptions made in the simulation or the convergence of the filter may not be entirely valid with

real-world noise and disturbances. The algorithm was next implemented in real-time on a modified Jazzy Pride Select 6

wheelchair (Mobility Products Corp., USA), shown in Fig. 4, to demonstrate that the ICR EKF approach works in practice.

An on-board computer serves as the principal interface between the joystick, sensors, motor controller, and Robot Oper-

ating System (ROS) used to control the wheelchair. An open-source, planar laser odometry package, RF2O, is utilized to

obtain position and orientation measurements via a SICK LMS511 scanning laser rangefinder [28]. HB6M Hollow Bore

Optical Encoders (US Digital, USA) are used to collect the wheelchair wheel velocities data, as well as wheel odometry.
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SICK LMS511
scanning laser 

rangefinder

Low-friction 
surface
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Computer&
and&power&
system&

(a) (b)

Figure 4: Robotic wheelchair used for experimentation: (a) Measurements of wheel velocities are obtained from the optical
encoders; (b) Slip testing environment with measurements of wheelchair position and orientation obtained via laser odometry
using a scanning laser rangefinder.

The odometry-based predictions provided by the encoders are then compared to the wheelchair position and orientation mea-

surements of the ICR EKF algorithm. Additionally, the proposed ICR EKF approach is compared to a standard EKF using

Eqns. 13 and 14 without the last three ICR rows in order further substantiate the contribution of the proposed algorithm.

Two experiments were performed to validate the ICR EKF algorithm, as well as to analyze the data in two separate

ways. In Experiment 1, a slip-based data analysis was performed that highlights the ability of the algorithm to converge

with incorrect initialization. In Experiment 2, a motion prediction analysis was performed that highlights the benefits of the

ICR EKF strategy. In Experiment 1, the wheelchair was first driven on a surface where the tires would not slip to allow

the ICR location estimates to converge to their true locations and then driven over a low-friction surface to induce slip on

the tires. The wheelchair’s path is shown in Fig. 5 (a). The non-slip surface consisted of common linoleum flooring. The

low-friction surface was accomplished using large plastic sheeting coated with Dawn and Palmolive Ultra Strength dish soap.

For Experiment 1, the ICR locations were initialized at 1.0 m, −1.0 m, and 0.2 m for yICRr, yICRl , and xICRv, respectively.

The ICR locations were initialized at these values to observe the response of the algorithm when the true ICR locations are

not known.

In Experiment 2, the wheelchair was driven in paths similar to that of Experiment 1 and the correct ICR locations were

used for initialization, but demonstrates the ICR EKF’s ability to predict the motion of the wheelchair during slip, as shown

in Fig. 7: (a) the wheelchair undergoing slip to the right, (b) the wheelchair undergoing slip to the left, and (c) the body of

the wheelchair slipping forward. The ICR locations were initialized to lie directly beneath the wheelchair’s drive wheels, the

true locations for a two-wheeled robot. The initial ICR locations for the wheelchair are 0.254 m, −0.254 m, and 0.0 m for

yICRr, yICRl , and xICRv, respectively. The experimental results are presented in the following sections.
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6 Results

This section presents the results of Experiment 1 and Experiment 2. The results of Experiment 1 are presented and

discussed in Section 6.1. The results of Experiment 2 are presented and discussed in Section 6.2.

6.1 Experiment 1: ICR EKF Performance

Experiment 1 was conducted to observe the performance of the ICR EKF algorithm even in situations where the algo-

rithm is initialized with values other than the true ICR locations. Over twenty trials were collected with similar results. For

simplicity, only one trial’s full ICR estimate results will be presented in this paper. The results of Experiment 1 can be seen

in Fig. 5.

The results shown in Fig. 5 are as follows: Fig. 5 (a) illustrates the path driven by the wheelchair as measured by laser

odometry, wheel odometry, estimated by a standard EKF with no ICR estimates (i.e. using Eqns. 13 and 14 without the last

three ICR rows), and estimated by the ICR EKF, which the low-friction surface shown in grey. Each turn is represented by

an encircled number and the two laps are labeled. In Fig. 5 (b), the orientation of the wheelchair (top), as measured by laser

odometry, wheel odometry, estimated by a standard EKF with no ICR estimates, and estimated by the ICR EKF, as well

as the velocity of the wheelchair (bottom), as measured by laser odometry and wheel odometry, are shown. The yawrate

comparison for laser odometry, wheel odometry, the standard EKF, and the ICR EKF is presented in Fig. 5 (c). The moments

in which the wheelchair turned are again represented by encircled numbers, which repeat for the second lap (labeled within

the figure).

A comparison of the experienced magnitude of slip for the right wheel, left wheel, and wheelchair body is presented

in Fig. 5 (d) and (e). A significant increase in slipping ratio was observed as the wheelchair traveled over the low-friction

surface, shown in grey, for both laps. The changes in slipping ratio per tire and for the wheelchair chassis are also apparent

in the two figures.

Finally, the estimated wheelchair left, right, and longitudinal ICR locations during the experiment are depicted in Fig. 5

(f). Once the algorithm converged, and when the wheelchair was not being driven on the low-friction surface, it was observed

that the ICR locations vary within 2-σ standard deviations of 0.057 m, 0.076 m, 0.043 m, with maximum deviations of

0.090 m, 0.085 m, and 0.078 m for yICRr, yICRl , and xICRv, respectively, from the true ICR locations. During slip, the

maximum ICR deviations are 0.79 m, 0.84 m, and 0.26 m for yICRr, yICRl , and xICRv, respectively, from the true ICR

locations. These results are 8.83, 9.88, and 3.30 times larger than the maximum deviation seen when the wheelchair is not

experiencing slip. These results can then be compared to the slipping ratio for the right wheel, left wheel, and wheelchair

chassis presented in Fig. 5 (e). Comparing Fig. 5 (e) and (f), it is observed that the slipping ratios are indeed increasing as

the wheelchair undergoes slippage, validating the deviations of the ICR locations observed at the same locations. Moreover,

the magnitude of slip in Fig. 5 (e) is comparable to the ICR deviations between the right wheel and yICRr, the left wheel and

yICRl , as well as the wheelchair body and xICRv, respectively.

The algorithm’s convergence period and the resulting convergence times are also seen in Fig. 5 (f). Initializing the

algorithm with arbitrary ICR locations results in convergence times of 14.10, 14.10, and 14.35 seconds for yICRr, yICRl , and
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xICRv, respectively. These convergence times average approximately 2.70 times, or 41%, longer than when the algorithm is

initialized with the true ICR locations, as will be discussed later in this section. Consequently, if the algorithm is incorrectly

initialized, useful predictions of wheel slip may not be accurately provided until the ICR locations have converged. Typically,

one would expect that the initialization of ICR positions from incorrect values would only occur during the first operation of

the wheelchair, or rarely occur because initial estimates could be forced to be underneath the wheels – as is typical in normal

no-slip operation.

Additionally, it was found that convergence times are strongly dependent on the motion of the wheelchair. If the

wheelchair is driven perfectly straight, the ICR estimates cannot be updated. The ICR locations will only converge quickly

from incorrect initial values if the wheelchair is driven with a nonzero angular rate.

The results shown in Fig. 5 (a), (b), and (c) present the improvement of the algorithm’s estimate and prediction of

position, orientation, and yawrate in comparison to odometry alone, as well as in comparison the standard EKF. The ICR

EKF algorithm estimates the position of the wheelchair within an error of 0.118 m in terms of Euclidean distance. Conversely,

the maximum odometry Euclidean distance error is 1.217 m, and the maximum standard EKF Euclidean distance error is

0.160 m. When comparing the orientation errors for the ICR EKF, odometry, and the standard EKF, maximum errors of

7.7 degrees, 102.5 degrees, and 11.3 degrees, were found, respectively. Similarly, the ICR EKF algorithm estimates the

yawrate of the wheelchair within an error of 0.380 rad/s, while the maximum odometry measurement error is over twice

that at 0.934 rad/s, and the maximum standard EKF measurement error is 1.255 rad/s. The ICR convergence period can be

seen as an increasing error in the EKF’s predicted wheelchair yawrate from the laser odometry-based ground truth’s more

accurate estimate of the wheelchair’s yawrate.

Moreover, to justify the assumption that the ICRs are affected by zero-mean Gaussian noise, a histogram of the ICR

locations for multiple trials is presented in Fig. 6. The top subplot shows the ICR locations for no-slip conditions, while the

bottom subplot shows the ICR locations while the wheelchair is experiencing slip. From Fig. 6, the hypothesis that each of

the ICR locations remain within a small bounded region is validated, especially during no-slip conditions. The distributions

are also seen to be Gaussian. Finally, an interesting aspect to note in this figure is the bias of the ICR locations to the right.

This bias may in part be due to un-modeled dynamics, such as friction. However, the more likely cause of the bias is that

the wheelchair only made left turns during the trials used to create the histograms. Consequently, an unforeseen result of the

proposed algorithm may be the predicted direction of turn by the wheelchair from the ICR location estimates.

6.2 Experiment 2: ICR EKF Motion Prediction

Experiment 2 was conducted to observe the ICR EKF algorithm’s prediction of wheelchair motion during slip. In

addition, Experiment 2 demonstrates the repeatable performance of the ICR EKF algorithm for different slip cases: the

wheelchair slipping to the right, the wheelchair slipping to the left, and the body of the wheelchair slipping forward. The

results of Experiment 2 are presented in Fig. 7.

For this work, the magnitude of slip is defined as:
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Figure 5: Results of Experiment 1 with low-friction surfaces shown in grey: (a) Comparison of the wheelchair’s position
from laser odometry-based ground truth, wheel odometry, a standard EKF, and the ICR EKF, respectively; (b) Comparison of
the wheelchair’s orientation from laser odometry, wheel odometry, a standard EKF, and the ICR EKF, respectively (top), and
a comparison of the wheelchair’s velocity from laser odometry and wheel odometry, respectively (bottom); (c) Comparison
of the wheelchair’s yawrate from laser odometry, wheel odometry, a standard EKF, and the ICR EKF, respectively; (d)
Comparison of magnitude of slip for the wheelchair’s right wheel, left wheel, and body, respectively; (e) Magnitude of slip
for the wheelchair’s right wheel (top), left wheel (middle), and body (bottom); (f) Comparison of the wheelchair’s true ICR
locations and the ICR EKF location estimates.

||λr,l ||=
V r,l

x − vx

vx
, (26)

where V r,l represents the wheelchair’s right or left wheel velocity and vx is the longitudinal velocity of the wheelchair. It

should be noted that equation (26) fails under two conditions: 1) the wheelchair is stationary with no forward longitudinal

velocity (V r,l
x = vx = 0) and thus Eqn. (26) approaches infinity; and 2) the wheelchair is turning in place with no forward

longitudinal velocity (vx = 0) and again Eqn. (26) approaches infinity.

The slip equation can then be rearranged and solved in terms of wheel velocity:

V r,l
x = vx(1+λr,l). (27)

Next, Eqn. (27) can be substitued into the ICR kinematic equations, such that Eqn. (2) and Eqn. (3), respectively, become

yICRl =−
vxλl

ωz
(28)
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Figure 6: Histogram of ICR locations for no-slip conditions (top) and slip conditions (bottom).

yICRr =−
vxλr

ωz
, (29)

and xICRv remains the same. Substituting Eqns. (27)-(29) into the kinematic motion model, we ultimately find that each state

equation remains the same as the original kinematic model presented in Eqn. (13), except for that of angular rate, ωz. When

replacing the right and left wheel velocities with wheel slip (Eqn. (26)), the equation for angular rate becomes a degenerate

case in which

wz = wz. (30)

Therefore, utilizing wheel slip as the inputs to the ICR kinematic equations will yield the same result as inputs of

wheel velocities, apart from Eqn. (30). However, the secondary contribution of this paper is that the ICR EKF provides a

model-based framework to predict motion as the wheelchair experiences slip, which cannot be achieved through slip-based

measurement alone.

To demonstrate the model-based predictions during slip, the three motion cases are presented in Fig. 7: (a) the wheelchair

slipping to the right, (b) the wheelchair slipping to the left, and (c) the body of the wheelchair slipping forward. An enhanced

view of each of these cases is presented in Fig. 7 (d)−(f), respectively. The instantaneous slip vectors represent the predicted

differences in the actual versus intended motion of the wheelchair. In particular, it was observed that wheel slip may not

always occur on a low-friction surface. Indeed, with typical wheelchair applications, the user would most likely prefer that
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Figure 7: Results of Experiment 2 with low-friction surfaces shown in grey. Prediction of wheelchair motion during slip
for three cases: (a) Wheelchair undergoing slip to the right; (b) Wheelchair undergoing slip to the left; (c) Body of the
wheelchair slipping forward; (d) Enhanced view of wheelchair undergoing slip to the right; (e) Enhanced view of wheelchair
undergoing slip to the left; (f) Enhanced view of wheelchair body slipping forward.

the wheelchair does not frequently experience slip, even on low-friction surfaces. For example, Fig. 7 (a) and (d) demonstrate

a scenario in which the wheelchair does not purely experience slip on the low-friction surface. However, the algorithm can

still accurately differentiate between situations when the wheelchair is and is not experiencing slip.

7 Discussion

The experimental results further validate what is observed in simulation in that the ICR locations are not found to expe-

rience significant deviation from their steady-state values when the wheelchair is operated under low-slip surface conditions.

The results in Fig. 5 (f) demonstrate how the ICR locations do not deviate significantly under normal operating condi-

tions, but change dramatically during slippage. These ICR locations can be learned during normal operating behavior of the

wheelchair because this is assumed to be the typical function. Thereafter, if significant changes are seen in the ICR locations,

this implies the presence of potentially dangerous slip, as seen in Fig. 7, which can be used to develop responses to enhance

wheelchair safety. For example, when error is present between the true and estimated ICR values, the wheelchair system can

enter a slip-safe operational mode, ranging from simply limiting the top speed to implementing an anti-skid system onboard

the wheelchair, analogous to anti-lock brakes on passenger vehicles.

Of particular importance is the dependence of the ICR convergence time on both EKF initialization and wheelchair
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motion. As mentioned in Section 4 and in the discussion of Experiment 1 in this section, the convergence time of the

algorithm is also highly dependent upon the motion of the wheelchair; a nonzero angular rate is necessary for the algorithm

to learn the ICR locations. In Experiment 1, the ICR estimates undergo a brief increase in error prior to converging. Due to

incorrect initial ICR estimates, a larger increase in error is observed prior to ICR convergence in Experiment 1.

The results of Experiment 2 demonstrate that the algorithm predicts the motion of the wheelchair even during slippage,

shown in Fig. 7. In both experiments, the ICR locations return very quickly to their true locations after the wheelchair

is driven off the low-friction surface and back onto the high-friction surface. The ICR locations will then only change

significantly when the wheelchair tires are undergoing slip.

From the results of the two experiments, it was also observed that the prediction of the wheelchair’s position and slip

is improved with the implementation of the ICR EKF algorithm in contrast to odometry alone. This result is clearly seen

in comparisons of the wheelchair’s true position (as provided by laser odometry-based localization), wheel odometry-based

position measurements, and the EKF estimated position for each experiment. The position comparisons are depicted for

Experiment 1 and Experiment 2 in Fig. 5 (a) and Fig. 7, respectively. While the wheelchair is driven on a non-slip surface,

the EKF algorithm prediction and odometry measurements closely track the map-based localization estimates. However, as

the wheelchair traverses the low-friction surface and the ICR locations have converged to approximately their true locations,

the EKF algorithm demonstrates significant improvement in estimating the position of the wheelchair when compared to the

use of odometry alone.

8 Conclusions

This paper is concerned with improving the safety of wheelchair operation by the estimation of wheelchair motion in the

presence of significant slip. The results of this research demonstrate the application of ICR estimation for a wheelchair under

situations where ICR locations should not typically change in order to estimate wheelchair tire slip in real-time, as well as

a model-based framework to predict motion during that slip. For the two experiments presented within this paper, while the

wheelchair is driven on the non-slip surface, it was shown that the ICR locations do not vary significantly under the slip-free

conditions of normal operation and were tracked with 2-σ standard deviations of 0.057 m, 0.076 m, and 0.043 m for yICRr,

yICRl , and xICRv, respectively. However, as the wheelchair tires experienced slip the maximum ICR discrepancies grew to as

much as 0.79 m, 0.84 m, and 0.26 m for yICRr, yICRl , and xICRv, respectively. This result is 8.83, 9.88, and 3.30 times larger

than the maximum error seen when the wheelchair is not experiencing slip. This result is significant because the changing

ICR values indicative of slip can be utilized to enable warning systems and slip-safe operational modes.

It is shown that the algorithm most quickly converges when the EKF is initialized with the true ICR estimates, resulting

in minimal deviations in the ICR locations. However, the estimates converged irregardless of the initial estimate.

In addition, odometry errors are particularly susceptible to low-friction surfaces, often representative of dangerous op-

erational conditions. The implementation of the ICR EKF for a distance of approximately 6 m over slip surfaces resulted

in maximum position errors of 0.11 m for the EKF algorithm, compared to 1.22 m for odometry. The ICR EKF algorithm

estimated the wheelchair’s yawrate within a maximum error of 0.38 rad/s, while the maximum odometry measurement error

was 0.93 rad/s. Consequently, the predicted position and yawrate of the wheelchair is improved when utilizing the ICR EKF
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estimates in contrast to pure odometry. Moreover, the implementation of this method with electric powered wheelchairs

can enhance the prediction of wheelchair motion when undergoing slip, thus enabling warning systems and safe operational

modes that can enhance the safety of wheelchair users.
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List of Figure Numbers and Respective Captions

Figure 1. Block diagram representing the signal flow of the system architecture.

Figure 2. (a) ICR locations for the robotic wheelchair when undergoing slippage. (b) North-east-down coordinate frame

with a positive clockwise heading angle.

Figure 3. Results of simulation with low-friction surfaces shown in grey: (a) Comparison of the simulated wheelchair’s

true position, two-wheeled robot model position, and the EKF estimated position; (b) Comparison of the simulated wheelchair’s

true orientation, two-wheeled robot model orientation, and the EKF estimated orientation; (c) Comparison of the simulated

wheelchair’s true ICR locations and the ICR EKF location estimates.

Figure 4. Robotic wheelchair used for experimentation: (a) Measurements of wheel velocities are obtained from the

optical encoders; (b) Slip testing environment with measurements of wheelchair position and orientation obtained via laser

odometry using a scanning laser rangefinder.

Figure 5. Results of Experiment 1 with low-friction surfaces shown in grey: (a) Comparison of the wheelchair’s position

from laser odometry-based ground truth, wheel odometry, a standard EKF, and the ICR EKF, respectively; (b) Comparison of

the wheelchair’s orientation from laser odometry, wheel odometry, a standard EKF, and the ICR EKF, respectively (top), and

a comparison of the wheelchair’s velocity from laser odometry and wheel odometry, respectively (bottom); (c) Comparison

of the wheelchair’s yawrate from laser odometry, wheel odometry, a standard EKF, and the ICR EKF, respectively; (d)

Comparison of magnitude of slip for the wheelchair’s right wheel, left wheel, and body, respectively; (e) Magnitude of slip

for the wheelchair’s right wheel (top), left wheel (middle), and body (bottom); (f) Comparison of the wheelchair’s true ICR

locations and the ICR EKF location estimates.

Figure 6. Histogram of ICR locations for no-slip conditions (top) and slip conditions (bottom).

Figure 7. Results of Experiment 2 with low-friction surfaces shown in grey. Prediction of wheelchair motion during

slip for three cases: (a) Wheelchair undergoing slip to the right; (b) Wheelchair undergoing slip to the left; (c) Body of the

wheelchair slipping forward; (d) Enhanced view of wheelchair undergoing slip to the right; (e) Enhanced view of wheelchair

undergoing slip to the left; (f) Enhanced view of wheelchair body slipping forward.

Sean N. Brennan 20 DS-16-1564


