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ABSTRACT
There are over three million wheelchair users within the

United States and that number is growing. This paper is con-
cerned with improving the safety of wheelchair operation by the
on-line estimation of tire slip. Wheelchair tire slip is a result
of icy or low friction surfaces, often representative of danger-
ous conditions. In this research, wheel slip is detected by es-
timating the instantaneous center of rotation (ICR) locations of
wheelchair wheels relative to the ground surface. Any departure
of the estimated ICR positions from the wheel contact point indi-
cates slippage is occurring.

An Extended Kalman Filter (EKF) algorithm uses inputs of
position and orientation obtained via map-based localization to
detect changes in wheelchair ICR location estimates. The ICR
EKF algorithm is verified in simulation. A robotic wheelchair is
used for testing the presented algorithms under conditions induc-
ing tire slip. The results show that the ICR locations do not vary
significantly when the wheelchair is operated under normal con-
ditions, i.e. low slip surfaces; however, they change significantly
under slip conditions. Implementing this method with electric
wheelchairs can improve the prediction of wheelchair motion
on slippery surfaces, enabling warning systems and safe oper-
ational modes that can enhance the safety of wheelchair users.

1 INTRODUCTION
There are approximately 3.6 million wheelchair users in the

United States [1]. As the U.S. population ages, health care op-

∗Address all correspondence to klw372@psu.edu.

portunities advance, and mobility device design progresses, the

use and importance of these assistive devices will increase [2].

In particular, the safety of these devices in a broad range of envi-

ronments must be ensured.

Winter and rainy weather conditions present added difficulty

for people who use wheelchairs, often putting further constraints

on mobility [3–5]. Many people elect to remain home rather than

risk driving their wheelchairs outside in a potentially unsafe en-

vironment caused by winter precipitation [3]. As Lemaire, et al.,
note, this inhibition can contribute to social isolation, as well as

psychosocial problems. Much of this problem is a result of drive

and caster wheels slipping on snow and ice [3,6]. However, there

has been very little research attributed to improving the control

of wheelchair motion on slippery terrains [3, 7].

The aim of this work is to implement an algorithm used by

Pentzer, et al., to better predict the motion of wheelchairs on slip-

pery surfaces, as well as assist in accounting for wheelchair mo-

tion inclusive of caster wheels in real-time [8, 9]. Caster wheels

are almost always included in wheelchair design for stability;

however, they can decrease the accuracy of a two-wheel differ-

ential drive kinematic model. While kinematic models including

caster wheels do exist, they are extremely difficult to implement

with the motion model and are often neglected.

The algorithm developed by Pentzer, et al., estimates the

location of track instantaneous centers of rotation (ICRs) on a

skid-steer mobile robot [8, 9]. Similar to differential-drive ve-

hicles, skid-steer robotics adjust right and left track speeds to

produce rotational motion. However, skid-steer vehicles rely on

track slippage for turning maneuvers. As stated by Pentzer, et al.,
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ICR kinematics for both skid-steer robots and differential drive

robots can provide accurate open-loop motion estimates when

operated at low speeds on flat, hard terrain [8–10]. Addition-

ally, ICR locations can be accurately estimated during robot op-

eration using an Extended Kalman Filter (EKF), after which the

required wheel or track speeds for a desired vehicle movement

may be calculated [8, 9]. The ICR locations estimated via the

EKF provided a mapping from the vehicle wheel or track speeds

to vehicle forward and angular velocity. This method has been

proposed to aid in model-based motion prediction of skid-steer

robots and improve the accuracy of odometry in the absence of

global positioning system (GPS) measurements.

The purpose of this paper is to improve the safety of

wheelchair operation via the on-line estimation of tire slip. The

remainder of this work is organized as follows: Section 2 outlines

the ICR kinematics and the EKF developed to estimate the ICR

locations; in Section 3, the simulation and simulated results for

algorithm verification are presented; Section 4 introduces the de-

sign of the robotic wheelchair platform used for testing, as well

as the methods used for experimentation; Section 5 describes the

experimental results obtained; finally, in Section 6, the contribu-

tions of this work and future work are discussed.

2 METHODOLOGY
This section outlines the ICR kinematics equations and the

EKF algorithm developed in [8,9] to estimate the ICR locations.

In Section 2.1, the calculations to obtain the lateral and longitu-

dinal ICR locations for the wheelchair’s right wheel, left wheel,

and chassis, as well as the wheelchair’s longitudinal, lateral, and

angular velocities are presented. The kinematic motion model

and measurement equations used for the EKF algorithm are given

in Section 2.2.

2.1 ICR Kinematics
The typical kinematic equations for two-wheeled robots

make several major assumptions; the equations assume the robot

is traveling over flat terrain, with no tire deformation, and that

no slipping occurs at the contact point between the drive wheels

and the ground surface [11]. Unfortunately, these simplifying as-

sumptions are not indicative of real-world operating conditions.

Rather, road and sidewalk surfaces are not always flat and wheels

deform under different loads. These deviations in behavior can

be measured from sensory inputs, especially when slipping oc-

curs, such as in poor weather conditions.

This work applies the ICR kinematics developed by [8–10,

12] to a robotic wheelchair system to enhance the prediction of

the wheelchair’s motion when the typical kinematic assumptions

fail. The ICR locations relative to the wheelchair with positive

X in the forward direction, positive Y to the right, and positive

Z down are shown in Fig. 1. The lateral ICR location between
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FIGURE 1. A diagram of the ICR locations for the robotic wheelchair

when undergoing slippage.

the wheelchair body and the ground, yICRv, is a point along the

Y -axis for which there is zero instantaneous velocity. The lateral

ICR location is given by

yICRv =
vx

ωz
(1)

where vx and ωz are the longitudinal and angular velocities of the

wheelchair, respectively. The ICR locations between the right

and left tires and the ground, yICRl and yICRr, are

yICRl =−V l
x − vx

ωz
(2)

yICRr =−V r
x − vx

ωz
(3)

where V l
x and V r

x are the velocities of the left and right tires rela-

tive to the body of the wheelchair, respectively. The longitudinal

ICR location between the tires and the ground, xICRv, is given by

xICRv =− vy

ωz
(4)

where vy is the lateral velocity of the wheelchair. The longi-

tudinal ICR locations between the left and right tires and the

ground, xICRl and xICRr, can be computed similarly to Eqn. (2)

and Eqn. (3),

2 Copyright © 2016 by ASME



xICRl =
V l

y − vy

ωz
(5)

xICRr =
V r

y − vy

ωz
(6)

However, since the wheelchair tires are nonholomonically con-

strained, the velocity in the Y direction is assumed to be zero,

simplifying Eqn. (5) and Eqn. (6) to

xICRr = xICRl = xICRv =− vy

ωz
(7)

As noted in [9], the values of the lateral ICR locations, yICRv,

range within ±∞ depending upon the motion of the wheelchair.

Conversely, the ICR locations yICRr, yICRl , and xICRv remain

bounded [10].

Equations (2)-(4) can then be solved simultaneously for the

wheelchair’s longitudinal, lateral, and angular velocities, vx, vy,

and ωz, respectively, as a function of left and right wheel speeds,

V l and V r.

vx =
V r

x yICRr −V l
x yICRl

yICRl − yICRr
(8)

vy =
(V l

x −V r
x )xICRv

yICRl − yICRr
(9)

wz =− V l
x −V r

x

yICRl − yICRr
(10)

The EKF discussed in Section 2.2 is founded upon Eqs. (8)-(10)

in order to predict the ICR locations.

2.2 EKF Estimation of ICR Locations
The EKF in this section has been derived in [9] to identify

the ICR locations of tracked and wheeled skid-steer vehicles us-

ing inputs of track and wheel speeds as well as vehicle position

and heading. A flow diagram outlining how sensor data is input

FIGURE 2. Flow diagram outlining the EKF algorithm system inputs

and outputs.

into the EKF is illustrated in Fig. 2. Individual wheel veloci-

ties are obtained from odometry data while the wheelchair’s po-

sition and orientation are supplied by a map-based localization

algorithm. The wheel velocities, as well as the wheelchair po-

sition and orientation are input into the EKF which then yields

improved estimates for wheelchair position, orientation, and ICR

locations.

A fixed north-east-down (NED) frame with a positive clock-

wise heading angle ψ , shown in Fig. 1, will be used as the

wheelchair’s frame of reference throughout this work. The

wheelchair velocities can be found from Eqs. (8)-(10)

Ṅ = vx sin(ψ)+ vy cos(ψ) (11)

Ė = vx cos(ψ)− vy sin(ψ) (12)

Augmenting Eqs. (10), (11), and (12) and assuming ICR loca-

tions remain constant results in the following continuous-time

kinematic motion model:

⎡
⎢⎢⎢⎢⎢⎢⎣

Ṅ
Ė
ψz

ẏICRr
ẏICRl
ẋICRv

⎤
⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎣

vx sin(ψ)+ vy cos(ψ)+ωN
vx cos(ψ)− vy sin(ψ)+ωE

− V l
x−V r

x
yICRl−yICRr

+ωω
ωr
ωl
ωx

⎤
⎥⎥⎥⎥⎥⎥⎦

(13)

Discretizing Eqn. (13) we obtain the discrete-time kinematic
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motion model:

⎡
⎢⎢⎢⎢⎢⎢⎣

Nk
Ek
ψk

yICRrk
yICRlk
xICRvk

⎤
⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎣

Nk−1 +ΔtVNk−1
+ΔtωN

Ek−1 +ΔtVEk−1
+ΔtωE

ψk−1 +Δtωzk−1
+Δtωω

yICRrk−1
+Δtωr

yICRlk−1
+Δtωl

xICRvk−1
+Δtωx

⎤
⎥⎥⎥⎥⎥⎥⎦

(14)

where Δt is the time step and ωE , ωN , ωω , ωr, ωl , and ωx are

additive zero-mean Gaussian process noises. For vehicles travel-

ing at low speeds on hard, flat terrain, which is the most common

case for wheelchairs, ICR locations have previously been shown

to remain within a small bounded regain [9, 10]. Consequently,

the ICR locations can be modeled as constants disturbed by ran-

dom noise.

Measurements of the wheelchair’s position, N, E, and orien-

tation, ψ are used to update the EKF’s state measurement vector,

y, given by Eqn. (15).

yk =

⎡
⎣

Nk
Ek
ψk

⎤
⎦ (15)

.

The measurement equations are then obtained as follows:

hk =

⎡
⎣

N + vN
E + vE
ψ + vψ

⎤
⎦ , (16)

where vN , vE , and vψ represent additive measurement noise. The

standard EKF equations can then be implemented as in [9].

3 SIMULATION AND ANALYSIS OF ICR EKF
For the initial validation of the ICR EKF algorithm, a

two-dimensional simulation is implemented modeling the true

wheelchair’s motion using the kinematic motion model in

Eqn. (14). The ICR locations are initialized to lie directly be-

neath the wheelchair’s wheels, such that yICRr = 0.254 m, yICRl =
−0.254 m, and xICRv = 0.0 m. The path of the wheelchair is

varied by adding zero-mean Gaussian noise to the left and right

wheel velocity inputs, as well as by the measurement and process

noise parameters. Wheelchair tire slip is simulated by adding ad-

ditional noise to the right or left wheel velocity inputs at various

time periods.
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FIGURE 3. The simulated ICR estimates undergo little variation

when the simulation undergoes low slip; however, they change signifi-

cantly when simulated slip is induced.

3.1 Simulation Results
The results show that the ICR locations do not vary signifi-

cantly under normal simulated conditions, i.e. low slip surfaces;

however, they change significantly under simulated slip condi-

tions, as observed in Fig. 3. Consequently, the EKF is able to ac-

curately predict the orientation and position of the wheelchair. A

comparison of the simulated wheelchair’s true heading to that of

the EKF’s predicted heading is shown in Fig. 4, in which negligi-

ble error is seen between the two heading values. The simulated

wheelchair’s true and estimated positions have no discrepancies

and are shown in Fig. 5. The convergence time of the filter de-

pends heavily on the motion of the wheelchair. If the wheelchair

is driven perfectly straight, the ICR estimates will not be updated.

Rather, the ICR locations are learned while the angular rate is

nonzero, which occurs when the wheelchair turns.

4 EXPERIMENTATION
A Jazzy Pride Select 6 (Pride Mobility Products Corp.,

USA) was used to gather experimental testing data and is shown

in Fig. 6. The wheelchair has been modified with a variety of

sensors. Wheelchair position and orientation measurements are

obtained from an open-source adaptive Monte-Carlo map-based

localization package using a Hokuyo URG-04LX scanning laser

rangefinder. The wheel velocities were obtained via HB6M Hol-

low Bore Optical Encoders (US Digital, USA). For comparison

between the ICR EKF algorithm and odometry-based predictions

over low-friction surfaces, the wheelchair position and orienta-

tion were also analyzed from measurements provided by the en-

coders and compared to the map-based localization estimates.
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FIGURE 4. Comparison of simulated true and predicted wheelchair

heading. There is negligible error between the two heading values.
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FIGURE 5. The simulated wheelchair’s true and estimated positions

with low friction surfaces shown in grey.

To validate the ICR EKF algorithm experimentally, the

wheelchair was driven first on a non-slip inducing surface to al-

low the ICR location estimates to converge to their true locations.

Once converged, the wheelchair was driven over a low friction

surface to induce slip on the tires. The experimental results are

presented in the following section.

5 RESULTS
As predicted in the simulated results, it is experimentally

observed that the ICR locations do not vary significantly when

the wheelchair is operated under low slip surface conditions, as

FIGURE 6. An image of the robotic wheelchair used for experimen-

tation. Measurements of position and orientation are obtained via map-

based localization and measurements of individual wheel velocities are

obtained from odometry.

shown in Fig. 7. The algorithm most quickly converges when the

EKF is initialized with the previous ICR estimates, resulting in

minimal variations in the ICR locations. The ICR locations will

then only change significantly when the wheelchair tires are un-

dergoing slip. If the EKF is initialized with poor ICR estimates,

the algorithm will take longer to converge on the actual ICR loca-

tions. The convergence time of the algorithm is also dependent

upon the motion of the wheelchair, as mentioned in Section 3,

and a nonzero angular rate is necessary for the algorithm to learn

the ICR locations. Furthermore, it can be observed that the ICR

locations do remain bounded to the same region under normal

operating conditions and low-friction conditions, as discussed in

Section 2.2.

The ICR errors between the measured and true locations are

shown in Fig. 8. It is observed that the ICR estimates undergo a

brief increase in error prior to converging, but then quickly con-

verge to very near their true states. Interestingly, it is the error

observed in the ICR states after convergence that lends the most
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FIGURE 7. The experimentally collected ICR estimates take some

time to converge; however, once converged, they change significantly

little even when slip is induced.

benefit to the safety of the wheelchair system. When the ICR

error is negligible, it can be safely assumed that the wheelchair

is not undergoing significant slippage. However, the changing

ICR locations and subsequent errors indicative of slip can then

be utilized to enhance wheelchair safety. When error is present

between the true and actual ICR values, the wheelchair system

can enter a slip-safe operational mode. A number of slip-safe

operational modes are possible, ranging from simply limiting

the top speed, to implementing an anti-skid system onboard the

wheelchair, analogous to anti-lock brakes on passenger vehicles.

The improved accuracy of the EKF to estimate the

wheelchair’s heading and position can be seen in Fig. 9. The

point at which the ICR locations begin to converge are observed

as an offset in the EKF’s predicted wheelchair position in com-

parison to the map-based localization algorithm’s more accurate

estimate of the wheelchair’s position. As the wheelchair tra-

verses over the low friction surface, the ICR locations have con-

verged to approximately their true locations; consequently, the

EKF algorithm estimates the position of the wheelchair within

an error of 0.36 meters in the x-direction and 0.50 meters in the

y-direction. Conversely, maximum odometry measurement er-

rors are 0.64 meters in the x-direction and 0.88 meters in the

y-direction, as shown in Fig. 10. While the implementation of

the ICR EKF algorithm yields a significant improvement in the

position estimate of the wheelchair, the result is still not accurate

enough to be relied upon as the only method of wheelchair local-

ization. The position estimate of the ICR EKF position estimates

could be improved with the implementation of a more accurate

localization method.
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FIGURE 8. The errors observed in the experimentally collected ICR

estimates. The largest errors occur as the ICR estimates converge. Once

converged, the errors are negligible
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FIGURE 9. Comparison of the wheelchair’s true position (as pro-

vided by map-based localization), odometry-based position measure-

ment, and the EKF estimated position with the low friction surface

shown in grey.

6 CONCLUSIONS AND FUTURE WORK
Wheelchair tire slip is a result of icy or low friction sur-

faces, often representative of dangerous conditions. This re-

search aims to detect wheel slip by estimating the ICR locations
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FIGURE 10. Comparison of x and y position errors between the

wheelchair’s true position (as provided by map-based localization) and

odometry measurements, as well as the wheelchair’s true position and

the EKF estimates.

of wheelchair wheels relative to the ground surface in order to

enhance the safety of wheelchair users. The results show that the

ICR locations do not vary significantly when the wheelchair is

operated under normal conditions, i.e. low slip surfaces; how-

ever, they change significantly under low friction conditions.

This result is significant because the changing ICR values in-

dicative of slip can be utilized to enable warning systems and

slip-safe operational modes. In addition, a significant problem

with odometry-based navigation is the error accumulation over

long distances due to drift, which affects measurements of both

the wheelchair’s position and orientation, particularly on sur-

faces with low friction. By utilizing ICR EKF estimates, the

position and orientation of the wheelchair can also be better

predicted. The implementation of this technique with electric

powered wheelchairs can improve the prediction of wheelchair

motion on slippery surfaces, thus enabling warning systems and

safe operational modes that can enhance the safety of wheelchair

users. Future work includes improving the ICR EKF location es-

timates via the implementation of a more accurate localization

method.
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