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Introduction: From intelligent transportation vehicles to ordnance disposal robots to 

exoskeletons, service members depend on their robotic partners to better serve our country. 

However, robotic partners require consistently reliable control signals to perform optimally. 

People who are influenced by changing health or environmental factors are not consistently 

reliable when operating complex machines. As robots become ubiquitous throughout the military, 

the need for a robotic partner to both recognize and adapt to their human partner’s changing 

abilities becomes critical, especially when operating in dynamic, complex, and uncertain 

environments. This need grows exponentially when a human-robot team faces an adversarial 

situation and a robotic partner’s ability to reason about a human’s cogency may shift the outcome 

of a life-or-death scenario. 

This research is a stepping stone towards developing robots that can differentiate useful human 

commands from those that are dangerous or noisy due to the individual’s unique control 

capabilities. When a human is distracted or fatigued, their ability to control their robotic partner is 

diminished1 increasing the potential for undesired outcomes. Without a measure of robotic trust, 

(i.e. the robot’s belief in the partner’s capabilities), the system cannot appropriately judge the 

human’s input and its actions to prevent undesired or dangerous outcomes. The aim of this proposal 

is twofold: first, to define an effective measure of robotic trust and second, to evaluate different 

methods of applying robotic trust within the domain of human-robot control sharing.  

Related Work: Recent trends in rehabilitative and assistive robotics (~10 years) demonstrate an 

evolution from developing fully autonomous systems that complete tasks for users towards 

robots that work alongside users and allow the human partner to retain as much control as 

possible.2 Researchers have developed numerous methods for allocating control between the 

human and the robot including linearly blending human and robot control inputs,3 dynamically 

shifting between defined levels-of-autonomy,4 and data-driven probabilistic methods that predict 

when to provide assistance.5,6 Literature has recently shown that dynamic autonomy allocation 

methods are not always optimal to the individual and thus require further customization.7 

Furthermore, the majority of shared control literature assumes the human partner exhibits a static 

level of control competency, an assumption that is invalid in many scenarios (e.g. skill 

improving via experience or skill degrading with injury or fatigue). 

If a person is distracted or fatigued, they may provide unreliable control inputs that may result in 

unintended and possibly dangerous consequences.1 According to [8] robotic trust is a measure of 

human cogency; the more reliable a human’s control signal, the higher the measure of robotic 

trust. In this work, robotic trust is measured as the difference between a user’s reference control 

trajectories and optimal control solutions.9 Further, this formulation of robotic trust is easily 

portable to other robotic platforms. Other formulations of trust compare human and robot 

performance using robot-specific measures and allocate or remove complete control authority as 

a direct result of trust measures.10 Further, these methods attempt to model human autonomy 

switching patterns for use in model predictive control. Few methods presently exist that quantify 

the human’s cogency when issuing commands in the human-robot team. Therefore, these articles 

serve as the primary basis for the development of robotic trust. 

Technical Aim 1: Identify effective measures of robotic trust based on human inputs. Three 

initial definitions of robotic trust will be analyzed: divergence, comprehension, and 

performance. Inspired by [9], which defined robotic trust as the difference between optimal 
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control trajectories and a human control inputs, divergence will inspect the difference between 

the human’s control inputs and the robot’s trajectories. Computations of divergence may be 

simple (e.g. the dot product) or complex (e.g. the Fréchet distance).9 Comprehension will 

quantify the human’s understanding of their robotic partner’s physical limitations via control 

theoretic system stability metrics11-12 and safety policy violations (e.g. frequency of autonomous 

interventions).13 Finally, performance uses task-agnostic means (e.g. efficiency measures such 

as mean completion time)14 to quantify the human’s ability to effectively accomplish an assigned 

task. An effective trust measurement may be a combination of all three of the aforementioned 

measures. Combinations of the methods may aggressively select the best performing trust metric, 

temporally average trust metrics, or weigh trust metrics in a blending scheme where weights are 

learned to maximize overall trust for an individual or task.  

Evaluation: Robotic trust measures will be explicitly calculated while individuals complete a 

variety of tasks with different robotic platforms. Both uninjured and differently-abled persons 

will participate in these studies. Trust measures will be compared to a variety of online and 

offline performance measures to determine which measures are most effective. Such 

performance measures may include post task user surveys, online user feedback (e.g. a request 

for assistance), online researcher feedback (e.g. annotations when users fail to recognize 

important safety features), or trial completion times.  

Technical Aim 2: Applications of robotic trust measures to improve shared control. Recent 

trends in assistive and rehabilitation robotics seek to maximize the human’s control of their 

robotic partner while simultaneously ensuring safety and efficiency.2,7 In linear autonomy 

blending,13 trust may be used to directly allocate the autonomy blending parameter combining 

human and robot control. In discrete autonomy allocation, the system measures the 

performance of the human partner through pertinent measures in real-time, and can dynamically 

adjust robotic trust to decide when to shift between discrete autonomy levels4 (e.g. obstacle 

avoidance, full autonomy, etc.). In probabilistic blending, trust is used to modulate control 

authority between the human and robotic partners; here, trust is modeled by a probability 

distribution that is continuously updated to incorporate the most recent information15 (e.g. the 

robot state, environment state, and/or task information). A single application of trust may not be 

sufficient for an entire task. Recent literature indicates the need to break some tasks into subtask 

primitives3,16-17 for control sharing. This suggests development of task-dependent trust 

measures and applications. Intent inference models18 can be used to predict the human’s task, 

break it into subtasks, and dynamically shift between appropriate measures of robotic trust. This 

aim further seeks to explore and define both task-agnostic and -dependent trust applications. 

Evaluation: Users, both healthy and differently abled, will be asked to complete a series of tests 

both with and without trust-tempered robotic assistance on a variety of robotic 

platforms. Comparing user performance and preferences, with and without robotic assistance, 

will inform which applications of robotic trust are most effective. Tests will also be designed to 

classify task-specific trust applications. Measures of human-robot performance may be temporal 

(completion time), spatial (accuracy of placement or arrival), or derived from safety (number of 

experimenter interventions). Useful measures of trust effectiveness may also include cognitive 

loading or perceived task difficulty. The NASA MATB-II “distraction task”19 and the NASA 

Task-Load Index Survey20 will be used to measure cognitive loading and perceived difficulty, 

respectively. Prior to robotic platform evaluations, subjects will validate robotic trust measures 

and applications through robotic simulations built using Gazebo.21  
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Motivational Domain: The fundamental constraints faced by both individuals with physical 

impairments and warfighters makes assistive and rehabilitative robotics an extremely salient 

domain for the development of robotic trust measures. In both combat environments and 

rehabilitative settings, the human-robot team is heterogeneous, the human is limited in their 

abilities to provide control signals, and the cost-of-error is extremely high. Additionally, the 

reliability of control inputs from differently abled individuals must be maximized for their 

continued mobility. While combat environments are more dynamic, those in rehabilitative 

environments are further constrained by their ability to provide command signals due to 

impairment. As a disease progresses, rehabilitation improves ability, or an individual’s assistance 

preferences change, autonomy must adapt its level of trust to meet the needs of the individual. 

This parallels combat situations where the robotic partner must consider human ability when 

adapting to adversarial threats invisible to humans or to situations where skilled warfighter may 

wish to rely on their intuition and override a machine in order to properly execute a mission. 

Finally, this work poses to significantly improve the lives of America’s impaired veterans.  

Resources: The argallab at Northwestern University is uniquely situated to develop measures 

and applications of robotic trust. The group has a well-established track record working within 

assistive and rehabilitative robotics.1,7-9,13,17 The lab has a custom, autonomous wheelchair 

platform (Fig. 1), a one-of-a-kind wheelchair obstacle course (Fig. 2) and two robotic arm 

platforms (Fig. 3) from Kinova Robotics,22 each of which can be used to validate various trust 

formulations on real hardware. Furthermore, the argallab is situated within the Shirley Ryan 

AbilityLab, the United States’ premier rehabilitation hospital. This facility permits robotic trust 

studies with numerous patient populations and collaborations with world-leading clinicians. 

Moreover, a large majority of recent research in robotic trust has been conducted at 

Northwestern University by argallab Director Prof. Brenna Argall and collaborator Prof. Todd 

Murphey, allowing for access to expert mentorship and insight.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 1: The custom 

autonomous wheelchair is 

composed of a Permobil 

C300 wheelchair, a 

computer running the 

Robotic Operating System 

(ROS),23 two ASUS Xtion 

RGB-D cameras,24 and a 

variety of control  
interfaces (joystick, head 

array, and sip-and-puff 

device).  

Fig 3: The MICO 6-DOF 

robotic arm by Kinova 

Robotics25 is one of two 

argallab-owned robotic 

arms been adopted by 

users worldwide as both 

assistive and research 

platforms.25 Kinova arms 

are equipped with onboard 

sensors and out-of-the-box 

ROS compatibility.  

Fig 2: The wheelchair 

obstacle course was 

custom designed to 

simulate common 

challenges faced by 

wheelchair users.  
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