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“Happy the man, and happy he alone,

he who can call today his own:

he who, secure within, can say,

Tomorrow do thy worst, for I have lived today.”

– Horace, Odes
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ABSTRACT

An Analysis of Human and Robot-Generated Information Streams to Inform Dynamic

Autonomy Allocation

Christopher X. Miller

An ideal autonomy allocation framework shifts autonomous assistance based on the

user’s needs and desires. A framework seeks to classify its input signals – human con-

trol commands, environmental signals, or the interaction between the human-robot team

– as ‘shift’ or ‘do not shift’ between levels of assistance. A human subject study was

designed to collect ground truth data to determine when to shift between levels of au-

tonomy in a 1-dimensional assistance framework. Information streams from the human,

the interaction between the human and the robot, and the environment were analyzed.

Machine learning methods – both classical and deep learning – were trained on this data.

An analysis of information streams from the human-robot team indicate an aggregate

classification accuracy of 59% and 85% for human-only and interaction-only data sets.

Interaction specifically yielded a notable improvement from chance (46%), when using

classical machine learning methods. Deep learning methods, as designed for this research,
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were not very effective at classifying ‘when to shift.’ This work demonstrates the classifi-

cation power of human-only and the fantastic value of interaction information streams for

use in the design of shared control frameworks. This work further analyzes the usefulness

of different levels of autonomy and user experiences. Possible future work to optimize the

presented classifiers and to develop individualized control authority allocation paradigms

is presented and encouraged.
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CHAPTER 1

Introduction

Many persons with mobility-limiting disabilities rely on assistive devices — electric

wheelchairs, canes, walkers, etc — to regain some, if not most, of their freedom-of-mobility.

In the mid-1980s [31], roboticists started to bring robotics autonomy to the assistive

technologies domain. However, many users of these early technologies felt that these

devices limited their freedom-of-mobility rather than improved their freedom-of-mobility;

many assistive device users felt the robotic autonomy was doing too much or completing

tasks they felt capable of completing. It quickly became evident to researchers that

assistive device end-users strongly prefer to collaborate with robotic devices rather than

be ‘moved’ by their devices [26].

Outside of the assistive technologies domain, human-robot teams are rapidly becoming

ubiquitous in society. Thus, the need for robots to recognize and adapt to their human

part’s changing abilities becomes critical. This is especially true when teams are operating

in dynamic, complex, and uncertain environments where poor robotic understanding can

lead to human injury or worse.

Shared control, a subdomain within robotics, seeks to effectively split a physical sys-

tem’s control authority between a human and an robotic agent. In one particular sub-area

within shared control, a robot’s autonomous assistance is broken into discrete, well-defined

levels known as levels-of-autonomy (LOAs). Presently, to shift between these LOAs, a

user typically directly requests an increase or decrease in autonomous assistance. This
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thesis explores how the information streams generated from the human, the environment,

and from within the human-robot team may be used to shift between these LOAs with-

out the user’s explicit request. Succinctly, this work seeks to present preliminary research

towards solving the problem of ‘when to shift’ between LOAs autonomously.

The questions of ‘when-to-shift?’ between LOAs and ‘what information useful?’ is

framed as a supervised classification problem. This work is not an exhaustive search

of all possible solutions for classifying when-to-shift between LOAs. For tractability,

this thesis focuses solely on the information streams from the human and as the result of

interaction between the human and the robot. The specific contributions of this document

are presented below.

1.1. Main Contributions

The main contributions of this document are as follows:

• A human subjects study to generate a labeled data set from which supervised

machine learning algorithms may classify when to switch between LOAs

• An analysis of both classical and deep learning classification methods for use in

possible autonomy allocation frameworks

• A evaluation of different information streams — namely those from the human

and human-robot interaction — for their suitability in predicting ‘when-to-shift’

1.2. Thesis Outline

The remainder of this thesis shall be presented as follows. Beginning in Chapter 2, a

review of relevant literature in shared control and dynamic control authority allocation

is presented to demonstrate both this research’s exigency and to extend its place within
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the field. Chapter 3 presents an experiment and a post-hoc analysis of collected data to

inform the design of future autonomy allocation frameworks. Finally, in Chapter 4 key

conclusions and future directions are presented.
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CHAPTER 2

Background and Related Work

Here a presentation of relevant prior work within the domains of shared control and

dynamic control authority allocation are presented. This chapter seeks to inform the

reader of this thesis’s place among the related literature and subsequently build this

work’s exigency.

2.1. A Review of Human-Robot Control Sharing

Robots are rapidly becoming more ubiquitous throughout society; as such, so is the

human-robot team. As was demonstrated in [26], individuals working in human-robot

teams seek to work along side their robotic partners rather than have fully autonomous

robots that neglect their human counterpart’s desires. The idea of shared control describes

this desire to work together with one’s robotic partner [32]. Most early shared control

literature seeks to allocate control authority to optimize for human-robot team success in

completing a desired task known a priori [29]. Other early strategies sought to optimize

for the user’s safety and provide early interventions to halt the robotic platform from

performing unsafe activities [44] (e.g. blocking a wheelchair from driving off a ledge

[6]). More modern trends in shared control (past 10 years) seek to provide the human

with as much control as possible [26]. Earlier in this trend, linear blending schemes

adapted a blending parameter to an individual’s needs [20]. Similarly, others propose

using POMDPs [27], probabilistic methods [14], [30], or control barrier functions [10].
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Most recently, researchers have modeled a human’s ability as a probability distribu-

tion that is continuously updated to incorporate the most recent information [38] (e.g.

the robot state, environment state, and/or task information). Others have demonstrated

success using data-driven, model-based shared controllers that seek to generate general-

izable control policies that do not require knowledge of a user’s long-term objectives [11].

While these state-of-the-art methods are achieving excellent performance in laboratory

settings, it was shown in [23] that many shared control methods may not necessarily

optimal for the end-user if they are optimal for the robot; [23] concluded that the future

shared control frameworks may require individualized personalization.

Interestingly, there exists a possible framework for further individualized customiza-

tion. In 1978, Sheridan and Verplank introduced the concept of Levels of Autonomy

(LOAs) [42]. In this interaction paradigm, a fixed number of discretized LOAs are de-

fined where, within each LOA, the control authority allocated to each the human and

the robot is pre-defined. As the level increases from lowest to highest, so increases the

amount of robotic assistance provided to the human. Ten LOA were initially defined in

this one-dimensional framework. More recently, this idea has morphed into the concept

of an autonomy spectrum [16] where each level rests on a two-dimensional plane with

autonomous assistance on the vertical axis and function-to-be-executed on the horizon-

tal. Such a 2D framework could be customized to an individual to follow the suggestions

proposed in [23] such that each level is optimized for a person’s needs and team’s task at

hand.

Where as some research has been conducted in defining functions to shift between

individual LOAs on a linear scale [15], [47] not enough research has been conducted to
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claim a definitive solution. Therefore, the proposed work seeks to explore one possible

solution to inform a framework for shifting between linearly-defined, 1D LOAs. Future

work may prove to define custom LOAs, a 2D shifting framework, and generalizable

shifting methods to define ‘when to shift’ and ‘to which level.’

2.2. A Review of the Information Streams used in Dynamic Control

Allocation

Nearly all shared control frameworks rely on information from within the human-

robot team or the team’s environment to allocate control authority [32], [44]. Allocation

frameworks based in safety tend to depend on environmental information streams [6].

Those streams used in assistive technologies rely more heavily on information derived from

the human’s control signals [23], [33]. Some such information extracted from the human

may include simple measures such as the smoothness of the human’s input [5] or the

frequency of issued commands [33]. More complex analyses of human-based information

streams compute measures of comprehension that investigate the human’s understanding

of the robot’s physical limitations via control theoretic stability metrics [21], [49].

Another interesting information stream to inform autonomy allocation monitors human-

robot team performance. As was shown in [44], there are few real-time, measures of

human-robot performance that generalize for all tasks. Most shared control literature

review human-robot team performance post-hoc using measures such as task completion

time or accumulated mistakes. Fortunately, some recent work has sought to close this

gap by defining real-time computable performance measures in areas such as command

following and trajectory following [34]. Further research needs to be conducted to better

define task agnostic measures of human-robot team performance.
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More recently, there has been an emphasis on leveraging the information encoded in

the interaction between the human and the robot. Some such measures of interaction

monitor the robot’s trust in the human’s capabilities (i.e. the divergence between the

human’s and the robot’s control commands) [12]. Other measures investigate the quality

of the information stream between the human and the robot [51]. Most recently, one

measure compare an existing human-robot team with high-performing human-robot teams

(e.g. Discrete N-Dimensional Entropy of Behavior — DNDEB) [50]. Given that human-

robot team performance depends directly on the interaction between the human and the

robot, it can also be stated that performance information streams are a subgroup within

interaction information streams.

Some of measures of interaction are quite computationally intensive and may require

computing platforms capable executing highly-parallelized code [11]. However, process-

ing such information streams is still less computationally intensive than computing those

from most environmental information streams whereas processing entire point clouds may

be necessary. Finally, many measures of the human’s state are typically the least com-

putationally intensive [33]. However, some of the most informative information signals

within human information streams may require specialized and/or costly hardware (e.g.

EEG caps) [7].

Most, if not all, of the aforementioned information streams may rely on some form

of manual feature engineering to extract information to inform an autonomy allocation

framework. Some believe an ideal framework may require little-to-no feature extraction

and process all raw information streams as to generalize to many platforms [36]. The need

for an investigation into which of the information streams — or combinations thereof —
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are most effective at informing an autonomy allocation framework is observed. Thus, a

first analysis of the aforementioned is presented in this thesis.
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CHAPTER 3

Classifying Human and Autonomy Signals to Inform Autonomy

Allocation

3.1. Introduction

This chapter describes a human trials study to generate labeled data to classify ‘when

to shift’ between discrete LOAs. It further presents classification attempts using both

classical and modern (deep learning) machine learning methods. Finally, this chapter

reviews the classifier’s results and presents a discussion of other study-related observations.

3.2. Information Streams in the Human-Robot Team

Numerous information streams exist within the human-robot team. Information can

be derived from the robot’s environment via LIDAR or encoder measurements. Infor-

mation about the human’s desires and state may be derived from their joystick or other

interface devices. The robot’s planner provides information about its state through its sen-

sor readings and suggested motions. Less commonly considered are information streams

that describe the interaction between the human and the robot; for example, the difference

between a planner’s and a human’s control commands. This smorgasbord of information

flowing within the human-robot team can be leveraged to improve the human-robot team

capabilities in the human’s favor. To that end, four primary information streams are

proposed in this thesis to exist within the human-robot team (Table 3.1).
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Information Stream Name Description
Human Control Signals (H) Information derived from the human’s control inputs
Autonomy Control Signals (C) Information derived from the robot’s planner’s control

commands
Interaction Signals (I) Any information derived as a result of the human-robot

interaction (e.g. differences between the human’s con-
trol commands and the robot’s); includes the team’s
task performance

Environmental Signals (E) Any information derived from the environment in
which the team is performing a task

Table 3.1. The four proposed signal groups within the human-robot team
and their description

Which of these information streams — or combinations thereof — are best suited to

inform an autonomy allocation framework most optimally is to be presented in a later

part of this thesis. To refine the scope of this thesis, only information streams from H, I,

and E are considered. Information from C is not analyzed as to retain a focus on shifting

autonomy for the human’s needs.

Some of these information streams are more computationally cost effective than oth-

ers. For example, processing environmental data as derived from a large point cloud is

more costly than computing features from a human’s joystick commands. Therefore, an

ideal allocation framework considers not only the richest information stream, but also

the associated computational cost. The information streams presented in Table 3.1 are

roughly ordered from least- to most-computationally costly. An in-depth discussion of

computational cost is not provided, only considered in a general sense.

3.3. Autonomy Framework Description

The proposed autonomy allocation framework is designed around the 1-dimensional,

discrete levels of autonomy framework proposed by [42]. In other words, shifting is only
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allowed between adjacent LOAs in a linear framework. LOAs, A, are partitioned into n

discrete levels such that Ai, i ∈ [0, n] where, as i → n, the control authority shifts from

the human to the robot. Within this framework, transitions may only occur between

adjacent autonomy levels following Ai → Ai+1 or Ai → Ai−1. In summary, the amount of

robotic assistance increases with Ai and vice-versa.

Here, autonomously shifting between LOAs is framed as a supervised, multi-class

classification problem where a learning algorithm will resolve a function such that g :

X → Y , where X are features and Y are the set of class labels. Here, Y includes three

labels: shift up (yi = 2), shift down (yi = 0), a default label, no shift (yi = 1). Features

vectors xi are labeled explicitly when a human or a näıve autonomy shifting framework

requests a shift up or down, otherwise they are assigned the default. The set of features,

X, are extracted from the information sets presented in Table 3.1. Classification models

are trained over feature extracted from these information streams and combinations of

these streams to reason about the information necessary to shift between LOAs.

3.4. Experimental Design

This section presents the experimental design and procedures used to build the data set

used to construct a proposed autonomy allocation method. For this preliminary research,

only “able-bodied” participants met the project’s exclusion criteria.

3.4.1. Robotic Platform

A customized, powered wheelchair is used for this experiment. The wheelchair, shown

in Figure 3.1, is a commercially available Permobil C300 (Permobil, Sweden) wheelchair
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fitted with a Velodyne LiDAR (Velodyne, San Jose, CA), RGB-D cameras, and an on-

board computer. The wheelchair can be autonomously driven, manually driven using

a standard two-dimensional joystick, or the computer can blend the human’s and the

robot’s commands.

Figure 3.1. The argallab
autonomous wheelchair

A Microsoft Surface 2 (Microsoft Corporation, Red-

mond, WA) is mounted on the wheelchair to present

the user with secondary tasks to modulate a partic-

ipant’s cognitive load. Finally, headphones are in-

stalled on the wheelchair to allow the platform to pro-

vide the user with audible alerts to changes in system

state.

3.4.2. Level of Autonomy Control Descriptions

Three LOAs are presented for this research. These levels were selected and refined via

an in-house pilot study. These are not to be confused with A which are computations of

human-robot agreement.

(1) A0 - Teleoperation: In A0, the executed command directly maps the user’s

input to the command output and no assistance is provided by the autonomy.

(2) A1 - Autonomous Stopping: In A1, the autonomy prevents the user from

running into nearby obstacles by blocking commands that will lead to collisions

and allowing direct command mapping otherwise.
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(3) A2 - Blended Autonomy: In A2, the wheelchair blends the human’s commands

(uh) with the autonomy’s obstacle avoidance planner (ur) using a linear blending

paradigm (eq. 3.1) to produce an executed command, uc.

(3.1) uc = (1− α) · ur + α · uh

The blending parameter (α = 0.5) is selected empirically. A2 follows the control

paradigm proposed in [20].

3.4.3. Autonomy Switching

A näıve autonomy shifting framework derived from measures of safety is implemented on

the wheelchair. The robot shifts up if it is located less than 0.65 m to the nearest obstacle

for more than 3 seconds. If the robot is located more than 0.75 m to the nearest obstacle

for more than 3 seconds, the robot shifts down. At any time during a trial, the user can

verbally request a shift up or down in assistance and the experiment’s proctor will change

the LOA. In this framework, the human’s request to shift always supersedes the robot’s

request. Shift requests by the human or the robot beyond the minimum or maximum

level-of-autonomy are discarded. In all instances, the user is alerted of a successful shift

via an audible alert.

3.4.4. The Study

The following section describes the study conducted using the aforementioned wheelchair

platform and autonomy allocation framework.
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3.4.4.1. Primary Task. Six different wheelchair obstacle courses were hand-designed

for participants to navigate. The obstacle courses contained different permutations of

navigating a doorway, a shallow ramp, a tight straight-away, a tight curve, and avoiding a

moving obstacle (a manually driven RC car). Figure 3.2 displays one such course. A par-

ticipant completes a course after they return to the course’s starting location in the correct

orientation.

Figure 3.2. An example
obstacle course

Each participant completes each course once. At the start

of each course, a participant is assigned a starting LOA. The

order in which users experience each course and the assigned

starting LOAs are assigned using a counterbalanced, within-

subjects design.

3.4.4.2. Secondary Task. A secondary ‘distraction’ task is

presented to the participant on the wheelchair-mounted tablet

to modulate the participant’s cognitive load while they nav-

igate the obstacle course. This distraction task (Figure 3.3) is based on the ‘gauges’

sub-task of the NASA Multi-Attribute Task Battery (MATB-II) [41]. This task is well-

studied and widely used in human-factors literature for cognitive load modulation. Cog-

nitive load is modulated to sufficiently increase task complexity such that the users may

require autonomous assistance.

The participant is instructed to monitor and respond to fluctuating gauge and lights

on a mock control panel 3.3. Participants must keep each of the four fluctuating gauges

within two tick marks of a center marker and respond if a gauge exceeds this range by

tapping the button below the gauge on the tablet’s touchscreen. If one of the two large
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lights changes colors, the participant must respond by tapping the button. The rate at

which the participant experiences malfunctions and the gauge speeds are tunable.

Figure 3.3. The secondary task. Here, the
second gauge from the left is out-of-bounds

Our system uses the U.S. Air Force

Research Laboratory’s suggested settings

[19]. According to [15], users need an in-

centive to interact with secondary tasks

sufficiently. To that end, users must re-

spond to at least 75% of malfunctions

accurately else the experiment is paused

until secondary task performance exceeds

75%; the performance threshold was selected empirically.

3.4.4.3. Study Protocol. To complete the experimental tasks, participants drive the

robotic wheelchair platform through unique obstacle after undergoing training. The entire

experimental protocol and consent form were approved by the Northwestern University

Institutional Review Board.

At the start of each session, each participant is given a description of the hardware

and the trial. They are then trained for each LOA and the distraction task. Training is

complete after the participant completes one traversal of a demonstration course at each

LOA and after they complete distraction task training.

At the start of each trial, the wheelchair is driven to the starting location by the

experimenter and the obstacle course is set. The proctor walks through the course for the

participant to demonstrate the path. At any time during the task, the participant may

ask for directions. Before the trial’s start, the participant is informed of their starting
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LOA and reminded that they may verbally request an increase or decrease in LOA at

anytime. The participant is then allowed to begin the course. This process is repeated

for each of the six trials.

After completing a trial, the participant completes a survey and the trial time is

recorded. After completing all trials, a final, custom survey is administered and the

participant is provided with an honorarium for their time.

3.4.4.4. Participant Evaluation Metrics. The two metrics utilized for evaluating

participant performance and experimental perceptions were:

(1) Perceived Difficulty: The raw, modified NASA-TLX score [25]. The TLX

score is shown to be a sufficient measure of perceived difficulty [24] and the

modified TLX is quicker-to-administer, comparable substitute [30]. The modified

TLX is presented to each participant after each trial. The seven statements for

the TLX are presented in Appendix A.

(2) Subjective Measures: A 5-point Likert survey consisting of six statements

was presented to each study participant after completing all six courses. These

questions assessed the subject’s perception of the experiment and their perception

of the individual LOAs.

3.5. Data Set Preparation and Description

The following section describes the specific signals extracted from the wheelchair nav-

igation tasks, participant demographics, data labeling, and filtering methods.
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3.5.1. Signal Selections and Descriptions

The raw signals from the robot that fall into each of the three information streams being

reviewed are presented in Table 3.2. Since the focus of this work is shifting as a result of

human and/or the human-robot interaction, E is reviewed only in combination with both

H and I. Features are extracted from these signals via either hand engineering or feature

learning. All signals are sampled at a constant 25Hz.

Information Stream Raw Signal Description
Human Control Signals (H) Jx, Jy: control commands from the operator’s joystick

from the joystick’s x- and y-axes.
ωh, vh: the human’s rotational and linear velocity
commands after translation from x-y joystick to linear-
rotational values oftentimes compactly presented as uH

Interaction Signals (I) ωr, vr: the robot’s rotational and linear velocity com-
mands from the planner; oftentimes compactly presented
as uR
ωh, vh: the human’s rotational and linear velocity
commands after translation from x-y joystick to linear-
rotational values oftentimes compactly presented as uH

Environmental Signals (E) R: the robot’s distance to the nearest obstacle as ex-
tracted from the planner’s costmap

Table 3.2. The raw signals grouped into each of the three information
streams reviewed; features are extracted from these raw signals via hand
engineering or feature learning methods

3.5.2. Data Set Description

Each subject (N=16) completed six different courses for a total of 96 total trials. The

mean age of participants was 26.1 ± 5.4 years and an equal number of men and women

participated in the study. A total of 1044 shifts were requested by both users and the

näıve shifting algorithm. Table 3.4 presents the breakdown of shifts up and down for the
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human and the robot. On average, each trial had 10.8 ± 4.38 shifts; Table 3.3 presents

statistics for both the human-robot team and the human alone. Furthermore, each trial

lasted 112.4 ± 20.3 seconds with a minimum trial time of 68 seconds and a maximum

trial time of 160 seconds. No participants requested clarification regarding the course or

their level of autonomy during their experiments.

Figure 3.4. Shift requests grouped by requester and organized by direction

Statistic Human and Robot Human Only
Mean Requests per Trial 10.8 2.57
Standard Deviation 4.38 2.97
Median Requests per Trial 10 1
Max Requests 24 14
Min Requests 0 0

Table 3.3. Statistics describing the shift requests for both the human and
the human-robot team
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3.5.3. Shift Filtering

During data collection, it was anecdotally observed that some study participants disagreed

with the robot’s changes in assistance. In response to this disagreement, some participants

would ‘cancel’ the robot’s shift LOA shift by immediately requesting a shift that would

return the participant the previous LOA. To train on these shifts would bias the learner

to classify shifts that shouldn’t have occurred. Since these cancellations occurred in rapid

succession, these requests could be filtered by removing all opposing shift requests that

occurred less than some constant time, τc, apart. This value, τc was selected by clustering

the time between all shifts of opposing directions. It was found that all shifts in opposing

directions that occurred less than 3.03s apart were to be set aside for later analysis and

not included in the training data.

3.5.4. Data Labeling and Conditioning

A look-back window will be created from the shift request back some time N as to label the

points prior to a shift which support the need for a shift. All other points shall be labeled

‘no shift.’ Since this duration, N , is unknown, it becomes an additional hyperparameter

tuned during training. All values of N yielded very few shift labels and thus, create

a highly-imbalanced data set. The accommodations to address class imbalance will be

presented within sections 3.6 (classical) and 3.7 (deep learning).

Since the control commands change for different LOAs (e.g. a user may provide less

frequent commands in a higher LOA), it is determined that the data should be conditioned

on the LOA in which it were sampled. This conditioning also addresses the differences in

available classes in within different LOAs. In A0 (up, no shift) and A2 (down, no shift),
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a binary classification problem is presented. Unlike the boundary LOAs, a multi-class

classification (up, down, no shift) problem is presented in A1.

3.6. Classical Classifiers

Classical machine learning methods present significant capacity for learning complex

classification models that can out-perform deep learning methods. As such, five different

classical models were trained and their results analyzed. This section presents the data

engineering, feature engineering, learner descriptions, and model performance for those

classical machine learning methods.

3.6.1. Feature Engineering

From the raw information streams presented in Table 3.2, five hand-engineered features

were extracted. This subsection presents these features — it must be noted that there

are many other possible features and these were selected from trends in recent literature.

3.6.1.1. Frequency of Human Input — HΩ. Researchers in automotive engineering

[8] have used frequency of human input to classify the need for autonomous assistance.

Researchers in rehabilitation robotics [33] have used the formulation in (eq. 3.2 - 3.3) to

classify robotic arm task difficulty.

(3.2) Ωt =
1

N

t∑
k=t−N

1

tk − tk−1

(3.3) HΩE
← α · Ωt + (1− α) · Ωt−1
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where Ωt is the present input rate, α is the weighting on the most-up-to-date measurement

in an Exponential Moving Average (empirically set, α = 0.8), tk is the time at which a

new joystick command from Jx or Jy is received (see Table 3.2, H), N specifies the filter

size, and HΩ is the human frequency feature.

3.6.1.2. Smoothness of Human Control Signals — HS. The smoothness of a per-

son’s motions is often monitored to track an individual’s recovery from injuries such as

stroke or similar [4]. One such measure of smoothness is the dimensionless SPARC, or

Spectral Arc Length (eq. 3.4 - 3.6). This feature is selected for both its effectiveness at

measuring smoothness among healthy and differently-abled populations and for its high

noise-immunity [5].

(3.4) HS ← −
ωc∫

0

( 1

ωc

)2

+

(
dV̂ (ω)

dω

)2
 1

2

dω

(3.5) V̂ (ω) =
V (ω)

V (0)

(3.6) ωc = min{ωmaxc ,min{ω, V̂ (r) < V̄ ∀ r > ω}}

where V (ω) is the Fourier magnitude spectrum of the user’s joystick inputs (derived from

from Jx or Jy; see Table 3.2, H) over an N second sliding window of commands, V̂ (ω) is

the normalized Fourier magnitude spectrum of the user’s inputs, ωc is a dynamic cutoff

frequency tuned for noise sensitivity, ωmaxc is the joystick’s bandwidth, and HS is the

human smoothness feature.
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3.6.1.3. Complex Human-Robot Agreement — IC. Prior work presented in [12]

indicates that comparing the divergence between human’s and the robot’s projected paths

is suitable for dynamic autonomy allocation. This difference, or measure of how much

the robot and the human ‘agree,’ compares a projection of the robot’s pose based upon

human’s current command to a projection of the robot’s posed from the autonomy’s

planner with a fixed time horizon. The curve length is computed using a discretized

version of the Fréchet distance [1] as shown in (eq. 3.7 - 3.8). A moving average of

Fréchet distances is computed to filter possible noise.

(3.7) F = inf
α,β

max
t∈[0,1]

{d (A(α(t)), B(β(t)))}

(3.8) IC ←
1

N

t∑
i=t−N

F(uHi
,uRi

)

where A,B are two curves, inf is the infinium (or greatest lower bound), d is a distance

function, uH and uR the human’s and robot’s projections, respectively (see: Table 3.2,

I), N specifies the moving average filter’s size, and IC is the complex agreement feature.

3.6.1.4. Simple Human-Robot Agreement — Is. Inspired by IC, a simple feature

is designed to compare the instantaneous commands provided by the human and the

autonomy at a given time step by computing the L2-normed difference between the human

and autonomy commands. To filter noise, an N-point moving average of these differences
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is also computed as shown in (eq. 3.9).

(3.9) Is ←
1

N

t∑
i=t−N

||uHi
− uRi

||2

where uH and uR the human’s and robot’s control command,s respectively (see: Table

3.2, I), N specifies the filter size, and Is is the simple agreement feature.

3.6.1.5. Distance to Nearest Obstacle — ED. The nearest obstacle in the planner’s

costmap is identified and the obstacle’s distance, following the rule in (eq. 3.10), is

returned. This rule is derived from the perception system’s range-accuracy specifications

and the platform’s minimum stopping distance.

(3.10) ED ←



0.50 R ≤ 0.50

R 0.50 < R < 3.00

3.00 R ≥ 3.00

where R is the distance to the nearest obstacle (see: Table 3.2, E) and ED is the filtered

distance.

3.6.2. Data Engineering

After feature engineering, the data were min-max normalized for each unique feature

such that all values are bounded from 0 to 1 and that the ”maximal” value is mapped

to one. The minimum and maximum values used for min-max normalization for each

feature were derived from the feature’s physical parameters. After normalization, all

features were labeled and conditioned upon their LOA following the description described

in section 3.5.4.
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The data set was split into train-validate-test data sets following a 60-20-20% ratio. To

accommodate class imbalance — the majority class, ‘no-shift” comprised 90-95% of the

data — the training set’s over represented class was randomly down-sampled such that

a 90:10%, over-represented:under-represented class balance was achieved. Majority class

down-sampling is historically a good starting point for class-imbalance and the ratios are

selected empirically using domain-specific knowledge for the given data set [3]. Finally,

the training, validation, and test data sets were shuffled.

To test the performance of each information stream in label prediction, models were

trained using different data sets containing only certain features; Table 3.4 presents these

groupings. More exhaustive information stream groupings are for future work.

Information Stream Features Selected
H (HΩ,HS) ∈ X
I (IC , IS) ∈ X
H + I (HΩ,HS , IC , IS) ∈ X
H + I + E (HΩ,HS , IC , IS , ED) ∈ X

Table 3.4. The features included in different data sets, X, to compare dif-
ferent information streams’ classification ability

3.6.3. Classical Models

Five different classical machine learning classification algorithms were selected for train-

ing: support vector machines (SVM), random forests (RF), gradient boosting classifiers

(GBC), logistic regression (LR), and Näıve Bayes (NB). These methods were selected as

to encompass a breadth of different classical machine learning classification algorithms.

The popular machine learning package scikit-learn was used to implement all classi-

fiers and performance metrics [37]. Table 3.6 presents the models trained and their key
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hyperparameters and Table 3.5 presents a brief discussion for each model. The parameters

used for all models are presented in Table 3.7.

To select the best hyperparameters for each learner, a grid search optimizing over

macro-F1 scores was performed for each learner [45], at each LOA, at each (group of)

information stream(s). All learners used scikit-learn’s default parameters unless oth-

erwise specified in the sections that follow. The grid search was realized using the hypopt

package which allows for the use of a specified validation data set and parallel learner

training [35]. In total, 9072 models were trained spanning each LOA, feature set, and

hyperameter.

3.6.4. Model Performance Measures

To compare information steam classification performance, aggregate balanced accuracy

was computed. This score first computes the balanced accuracy, or the arithmetic mean

of the class-wise accuracies for each LOA-specific model. Then, a weighted average of

these balanced accuracies is computed where the accuracies are balanced on the number

of points in a LOA-specific model’s training set. This score treats each class with equal

importance and for this preliminary work, all classes are considered equally important.

As a point of comparison an aggregate chance score was computed from the weighted

average of each LOA’s individual chance scores. The individual chance scores were the

inverse of the number of classes per LOA and the weights were the number of points in

the test set for each LOA.
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Model Name Model Discussion
SVM Constructs an N-dimensional hyperplane to separate different features

belonging to different labels [18]; selected for their popularity in multi-
class classification

RF An ensemble learner that fits multiple decision trees on multiple subsets
of the data set and uses averaging to select the model’s prediction [9];
selected to test ensemble methods and for its immunity to over fitting.

GBC Also known as gradient boosted decision trees, combine many weakly
predictive decision trees to create a stronger predictive model. More
weakly predictive trees are fit during the learning process on the neg-
ative gradient of the learner’s loss function [22]. Notable, this method
is quite robust to over-fitting even with many boosting stages; selected
to test boosting methods on the data set

LR Seeks the relationship between features and classes using probabilities
using a logistic (S-curve, sigmoid); estimates the parameters of a lo-
gistic function and subsequently computes class probabilities from this
function [17]; selected for its simplicity and widely acceptance

NB A learning algorithm that applies Bayes’ theorem and “näıvely” as-
sumes every feature, given its class variable’s value, is conditionally in-
dependent [52]; here, the ComplementNB implementation of the Näıve
Bayes classifier is selected because of its capability to handle class
imbalance [39] and address the “severe assumptions” made by Multi-
nomial Naive Bayes classifiers; selected to investigate the efficacy of
Bayesian networks on this dataset

Table 3.5. A discussion for each classical model investigated

3.6.5. Classical Results

Model classification performance was tested using only non-augmented test data and nei-

ther validation nor training data were included in testing. Figure 3.5 presents the learner-

wise aggregate balanced accuracy scores for all of the learners. The aggregate scores

presented are computed over the best performing individual LOAs for each information

stream within each individual learner.

The gradient boosted classifiers (GBC) and random forests (RF) out-performed all

other models significantly. Specifically, the GBCs performed best for all information
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Model Name Model Description
SVM kernel functions: (rbf, poly, linear)

degree (poly only): (3, 8)
C: (0.1, 1, 10, 100)
class weight: auto: (n_samples/ (n_classes * np.bincount(y))
gamma (rbf and poly only): auto (kernel coefficient that follows:
1/n_features )

RF n estimators: (10, 100, 1000, 2000, 5000)
class weight: auto: (n_samples/ (n_classes * np.bincount(y))

GBC n estimators: (10, 100, 1000, 2000, 5000, 10000)
class weight: auto: (n_samples/ (n_classes * np.bincount(y))
n iter no change : 1000

LR C: (0.1, 1, 10, 100, 1e3, 1e4, 1e5)
NB alpha: (1, 2, 10, 20, 100)

fir prior: (True, False)
norm: (True, False)

Table 3.6. Each classical learner and its key hyperparameters.

Parameter Values
Look-Back Window N ∈ [0.25, 3.50] in 0.25 steps

Table 3.7. Settings and hyperparameters used for all classical learners

streams except for the human-only information stream. There, the RF out-performed the

GBC. Table 3.8 summarizes this performance. All other models barely surpassed chance

and will not be reviewed further. To compare the predictive power of each the individual

and combined information streams, the best performers for each stream were selected and

are plotted in Figure 3.6.

Information Stream Best Learner
H RF
I GBC
H + I GBC
H + I + E GBC

Table 3.8. Best classical learners for each information stream
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Figure 3.5. Aggregate balanced accuracies per information stream per learner

It’s apparent that monitoring only H encodes sufficient information to perform bet-

ter than chance (46% vs. 59%). Providing more predictive power still, I provided an

improvement of 26% increase over H and 36% over chance for a score of 85%. Combin-

ing the information streams H and I performed slightly worse (85% vs. 82%) than I.

This may have occurred because of the similarity of information encoded in both I and

H. Furthermore, providing more information increases the dimensions of the data set

which could create sparsity in the data set and thus impact performance. Finally, adding

information stream E provided a modest improvement over I alone at 92%.

To assess the model’s aggregate skill, the upper and lower bounds on the model’s clas-

sification error are presented in Table 3.9. These error values are the balanced, aggregate

error bounded by the balanced, aggregate confidence interval (Wilson score interval).
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Figure 3.6. The best classical learner per information stream’s aggregate
balanced accuracy for test data

Information Stream Aggregate Error Confidence Interval
H 40.81% 0.5862%
I 14.56% 0.4207%
H + I 17.67% 0.4550%
H + I + E 8.11% 0.3209%

Table 3.9. Aggregate balanced classical model error and the related confi-
dence interval

3.7. Deep Learning Methods

Modern machine learning methods presently focuses heavily upon on the area of deep

learning. One of the greatest advantages of deep learning over classical machine learning

is the near elimination of manual feature engineering thus, expediting the model learning

process.
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3.7.1. Data Engineering

The raw data streams presented in Table 3.2 were min-max normalized about their min-

imum and maximum values as derived from their source’s physical parameters. After

normalization, the data were divided into overlapping windows (one point in, one point

out) of data where each window is labeled according to when a shift was requested. Win-

dows labeled as ‘shift’ were not overlapped with ‘no-shift’ windows and vice-versa. The

data were once again conditioned on LOA. A class imbalance of roughly 99.5% for the

majority class was observed for all window sizes and LOA conditionings. To manage this

imbalance, two data sets were generated. One was randomly under-sampled following both

a 90:10% majority:minority class balance. The other was constructed from random under-

sampled data set where the minority classes were randomly up-sampled until all classes

are uniformly represented [28]. The data sets were divided into train/validation/test sets

following a 60-20-20 split. The test and validation sets were not augmented using any up-

or down-sampling.

Since the human control commands are but a transformation of the joystick commands,

generating models from a combination of I + H was deemed redundant and precluded

from training. Table 3.10 presents the signals used in each information stream for deep

learning. The table also clearly demonstrates the overlap between I +H and thus justifies

its preclusion due to redundancy.

3.7.2. Deep Learning Models Trained

Six different deep learning models were selected for this task. Each model was inspired by

either existing autonomy shifting literature, its popularity in the field of deep learning, or
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Information Stream Features Selected
H (Jx, Jy, ωh, vh) ∈ X
I (ωr, ωh, vr, vh) ∈ X
H + I + E (ωr, ωh, vr, vh, Jx, Jy,R) ∈ X

Table 3.10. The raw signals for each information stream in, X, for compar-
ison using deep learning

a similar problem. Table 3.12 presents these model’s components and Table 3.11 presents

the inspiration behind each model. The parameters used for all models are presented in

table 3.13. All models were trained on every LOA, for every value of N , and on both

the 90:10%- and the uniformly- class balanced data sets. Models were validated and

tested using the non-augmented data. The best performing model within each LOA were

selected by comparing balanced accuracy scores. All models underwent early-stopping

when the model’s validation loss increased or remained constant for five epochs. A total

of 120 deep learning models were trained.

3.7.3. Model Performance Measures

Aggregate balanced accuracy — the same model performance measure presented in section

3.6.4 for the classical machine learning models — was used to compare different deep

learning models.

3.7.3.1. Deep Learning Results. All presented results are based on model perfor-

mance for test data alone. The 90:10% randomly under-sampled data set yielded no

improvement over baseline for all learners and will be precluded from all analysis. Only

the uniformly-balanced results shall be presented. For each information stream, there

existed a different best learner; these results are presented in Table 3.14. To compare the
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Model Name Model Discussion
2DCNN Inspired by image processing [48] and EEG classification [46]; CNNs

should extract many complex features
LSTM Only Usage inspired by prior work [51] where similar LSTM network ar-

chitectures were used to classify signal degradation in different control
levels to inform autonomy allocation; LSTM units should capture time-
varying features

BLSTM Only Same literature reference [51] as LSTM Only; considers the bidirectional
time-varying features instead of only uni-directional features

1DCNN-LSTM Inspired by the UC Irvine’s Human Activity Recognition data set [2]
and [40], this model implements the model presented here [13] which
achieves good accuracy on the UCI HAR set

ConvLSTM2D Same inspiration as above [13],[2]; the ConvLSTM2D [43] unit is a
variant of the LSTM that contains a convolution operation within the
LSTM cell

2DCNN-LSTM Inspired by 1DCNN-LSTM and LSTM Only; it is believed that a 2DCNN
could extract more features than a 1D CNN and more LSTM layers
may improve classification performance

Table 3.11. A brief discussion for each deep learning model and its origins

predictive power of each information stream, the best performers’ aggregate accuracies

are presented in Figure 3.7.

The results of shown in Figure 3.7 demonstrate similar (H) or poorer (I: -27% and

H + I + E : -7%) aggregate performance across all information streams while using deep

learning techniques when compared to the best classical learners presented in Figure

3.6. Similar performance for H reinforces the formerly mentioned result that human-

only information streams encode enough information to out-perform chance and possibly

inform an autonomy shifting framework.

To assess the deep learning models’ aggregate skill, the upper and lower bounds on

the model’s classification error are presented in Table 3.15. These error values are the
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Model Name Model Description
2DCNN 3x 2D CNNs: filters (in order): 32, 64, and 128, kernel : (2,2)

MaxPool2D: size: 2
Dropout: rate: 0.10
3x Dense Layers: Number of Units (in order): 500, 250, 50
Output Layer

LSTM Only 3x LSTM Units: Number of Units : 200 each
3x Dense Layers: Number of Units (in order): 500, 250, 50
Output Layer

BLSTM Only 3x Bi-Directional LSTM Units: Number of Units : 200 each
3x Dense Layers: Number of Units (in order): 500, 250, 50
Output Layer

ConvLSTM2D 1x ConvLSTM2D: filters : 64 each, kernel : (1,3)
Dropout: rate: 0.10
1x Dense Layers: Number of Units : 100
Output Layer

1DCNN-LSTM 2x 1D CNNs: filters : 64 each, kernel : 5
Dropout: rate: 0.10
MaxPool1D: size: 4
1x LSTM Unit: Number of Units : 100
1x Dense Layers: Number of Units : 100
Output Layer

2DCNN-LSTM 3x 2D CNNs: filters (in order): 32, 64, and 128, kernel : (2,2)
MaxPool2D: size: (3,3)
Dropout: rate: 0.10
3x LSTM Units: Number of Units : 200 each
3x Dense Layers: Number of Units (in order): 500, 250, 50
Output Layer

Table 3.12. Each deep learning model trained and its architecture.

Parameter Values
loss_function categorical_crossentropy

batch_size 128
Output Layer Activation softmax

Activation Function Otherwise relu

Look-Back Window N ∈ [1.25, 3.50] in 0.25 steps

Table 3.13. Settings used for all deep networks
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Information Stream Best Learner
H ConvLSTM2D

I 2DCNN

H + I + E LSTM Only

Table 3.14. Best deep networks for each information stream

Figure 3.7. The best deep learner per information stream’s aggregate bal-
anced accuracy for test data

balanced, aggregate error bounded by the balanced, aggregate confidence interval (Wilson

score interval).

Information Stream Aggregate Error Confidence Interval
H 40.50% 0.4749%
I 41.41% 0.4503%
H + I + E 14.05% 0.3349%

Table 3.15. Aggregate balanced deep learning model error and the related
confidence interval
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The differences in performance for the other information streams may be the result of

the extreme class imbalance. Many deep networks struggle to achieve good performance

with highly imbalanced data sets, even after data augmentation [28]; however, since some

models do respond well to random up- and down-sampling, this exercise was not in vain as

it may inform future researchers of methods already dis-proven. Future work investigating

more complex models (e.g. variational auto-encoders), simpler models (e.g. fewer units in

each layer to prevent training set over-fitting) or conducting more exhaustive grid searches

on the existing deep networks are likely necessary. Furthermore, some feature extraction

layers may not be able to extract all needed features; some operations, such as the square

root function (see computation for HS in eq. 3.4) cannot be computed with a CNN.

Perhaps, a combination of manual and automatic feature extraction may be necessary to

improve deep learning classification accuracy.

3.8. Analysis of Human Behavior and Preferences

The following section reviews results from the surveys administered to each individual

following each trial or at the conclusion of all trials. Since these survey results only

encompass results from sixteen people, computing meaningful statistical significance is not

possible. These results should be interpreted as patterns worthy of further investigation.

3.8.1. LOA Preference Analysis

Following the conclusion of all trials, study participants were presented with the statement

I found AX to be a useful mode of operation three times where, A is a LOA and X ∈ [0, 2]
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on a five-point Likert scale. For this scale, a higher score indicates stronger agreement.

The survey’s results are presented in Figure 3.8.

Figure 3.8. User preference for each realized LOA on a 5-point Likert scale

In future studies, a different implementation of A1 may be necessary to increase par-

ticipant satisfaction. However, these results do indicate that both A0 and A2 were well-

received.

3.8.2. Participant Experience Survey

Following the conclusion of all trials, study participants were presented with three state-

ments on a 5-point Likert scale regarding different aspects of their experiences completing

the experiment. The survey’s results are presented in Figure 3.9. For this scale, a higher

score indicates strong agreement and vice-versa. These statements were:

• Q1: It was easy for me to adapt to the new assistance.

• Q2: The changes in assistance helped me complete the course.

• Q3: I expected the changes in assistance.
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Figure 3.9. Responses to each experiment experience survey prompt

The results indicate that participants were generally amenable to changes in assistance

throughout the study and they generally found the changes in assistance helpful. The

results to Q2 may improve if the implementation of A1 is improved. Finally, participants

mostly expected changes in assistance via the audible alerts —– this result is supported

by a past, in-house pilot study on alert paradigms.

3.8.3. Participant Perceived Difficulty Analysis

Following the completion of each trial, each user was presented with the modified NASA

TLX survey [25], [24]. The modified TLX survey [30] removes the TLX’s typically

administered pair-wise comparisons to simplify the survey. The subject- and course-wise

TLX results are presented in Figure 3.10. The modified TLX scores range from 0 to 42

and a higher score indicates higher perceived difficulty. The presentation of the TLX

questionnaire is presented in Appendix A.

Little discrepancy is observed in perceived difficulty between each course, demon-

strating the comparability of all trials. The perceived difficulty varied minimally between
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Figure 3.10. Subject-wise (left) and course-wise (right) TLX scores

participants as well, indicating the experiment was equally challenging for all participants.

Thus, all subject-trial pair data sets are comparable in human experience. Finally, not

enough data exists to draw conclusions about the perceived difficulty and the efficacy of

the presented autonomy shifting paradigm.

3.8.4. Shift Cancellation Analysis

The number of cancellations to avoid shifting up or to avoid shifting down to any given

LOA were nearly equal with 55 and 54 cancellations, respectively. The only observable

pattern among the cancellation data is presented in Figure 3.11. Users almost exclusively

‘canceled’ shifts to avoid entering LOA = A1. This further reinforces the need to redesign

this LOA for future studies.
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Figure 3.11. Analysis of the shifting cancellation data
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CHAPTER 4

Conclusions

The aim of this research sought to inform the design of dynamic autonomy alloca-

tion frameworks by analyzing the classification power of different information streams

within the human-robot team. This work successfully developed different machine learn-

ing models capable of classifying data from different information streams to inform an

autonomous shifting framework ‘when to shift’ between discrete LOAs. Specific results

and future directions — both near and far — are presented below.

4.1. Main Takeaways

This work proved that it is, indeed, possible to train an algorithm capable of an-

swering the question ‘when to shift’ between discrete LOAs in a 1-dimensional assistance

framework. It also showed that the most computationally intensive information streams

— namely those from the environment — are not required in an autonomy shifting frame-

work. Furthermore, and most interestingly, it was shown that the human’s control inputs

encode enough information to perform better than chance (13% improvement) alone. This

demonstrates the possibility of autonomy shifting frameworks that review the human’s

inputs alone. However, future studies need to be conducted to present more concrete

statements.

Monitoring the interaction between the human-robot team, however, poses significant

potential for informing an autonomy shifting framework. The interaction information
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streams alone beat chance by nearly 40%. At this time, it appears much more likely

that future autonomy shifting frameworks could rely on the human-robot interaction

information streams to determine ‘when to shift.’

This work also demonstrated the power of hand-engineered features and the important

of domain-specific specific knowledge within machine learning. Classical machine learning

methods still pose significant benefits within robotics and shared control research. In

short, bigger and deeper methods are not always better. By presenting results that did

not perform, future researchers may not need to invest resources into testing or assessing

these specific methods at a later date. However, there still exists potential to use different

deep learning methods for feature extraction to minimize the need for manual feature

extraction — this remains an area for future research. Another contribution of this work

also provides future researchers with a benchmark to compare future autonomy shifting

frameworks. The efficacy of two of three presented LOAs and highlights the need for a

comprehensive study comparing the usefulness of different LOAs are also presented in this

thesis.

This work may serve as an early attempt to address the latent space between the

human and the robot when the robot is determining how to best help the human. In other

words, this work attempts to estimate the human’s desires and needs based on estimates

of the human’s desires for a population of able-bodied individuals. Approximating the

human’s needs and desires for a given environment using very little information about the

individual the robot is assisting — humans address this via empathy, — remains an open

problem and this work takes a small step towards a resolution. More advanced methods
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will may initially estimate human needs from a population-wise data set and use transfer

learning to update the initial model for an individual’s unique needs and desires.

4.2. Future Directions

Immediate future directions of this work — for researchers wishing to expand on this

work directly include:

• Testing deep networks with fewer units in the dense and LSTM layers as the

models may be over fitting to the training data

• Test this data set using different autoencoders specifically designed to handle

severely class-imbalanced data sets; this idea is inspired by [36].

When reviewing this work with a longer time horizon, the following are proposed for

future study:

• The investigation of non-linear (2D) shifting paradigms and frameworks that seek

to answer not only ‘when to shift?’ but also ‘where to shift?’ with a focus on

interaction stream information

• The development of frameworks that adapt to an end-user’s ever changing needs

and capabilities possibly by using transfer learning to ‘seed’ an initial system for

later adaptation
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APPENDIX A

Modified NASA TLX Questionnaire

The following presents the modified NASA-TLX survey questions presented to study

participants. These are from [30] which are inspired by [25]. Each statement is presented

with a 7-point Likert scale where a 7 indicates “strongly agree” and a 1 indicates “Strongly

disagree.” The scores are summed together without weighting – the score’s range is from

0 to 42. A higher score indicates a perceived higher human cognitive load.

(1) Mental Demand: The task required a large amount of mental and perceptual

activity (e.g., thinking, deciding, calculating, remembering, looking, searching,

etc)

(2) Physical Demand: The task required a large amount of physical activity (e.g.,

pulling, pushing, turning, controlling, activating, etc.)

(3) Temporal Demand: I needed to be quick to perform the task.

(4) Performance: I was successful in accomplishing the goals of the task set by the

experimenter (or myself).

(5) Effort: I had to work hard (mentally and physically) to accomplish the task.

(6) Frustration Level: I felt irritated / stressed / annoyed during the task.
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